Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neuroscience Research 2004-Nov

N-acetylcysteine prevents endotoxin-induced degeneration of oligodendrocyte progenitors and hypomyelination in developing rat brain.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Manjeet K Paintlia
Ajaib S Paintlia
Ernest Barbosa
Inderjit Singh
Avtar K Singh

Parole chiave

Astratto

Periventricular leukomalacia (PVL), the dominant form of brain injury in premature infants, is characterized by diffuse white matter injury and is associated with cerebral palsy (CP). Maternal and placental infections are major causes of prematurity and identifiable etiology of PVL and CP. Here we have evaluated the therapeutic efficacy of N-acetylcysteine (NAC), a potent antioxidant and precursor of glutathione, to attenuate lipopolysaccharide (LPS)-induced white matter injury and hypomyelination in the developing rat brain, an animal model of PVL. Intraperitoneal pretreatment of pregnant female rats with NAC (50 mg/kg), 2 hr prior to administration of LPS at embryonic day 18 (E18), attenuated the LPS-induced expression of inflammatory cytokines such as tumor necrosis factor-alpha, interleukin-1beta, and inducible nitric oxide synthase in fetal rat brains. There were significantly reduced numbers of TUNEL(+) nuclei coimmunostained for platelet-derived growth factor-alphaR(+) [a surface marker for oligodendrocyte progenitor cells (OPCs)] at E20 in the subventricular zone of fetal rat brain in the NAC + LPS group compared with the untreated LPS group. Interestingly, immunostaining for O4 and O1 as markers for late OPCs and immature oligodendrocytes demonstrated fewer O4(+) and O1(+) cells in the LPS group compared with the NAC + LPS and control groups. Consistent with O4(+)/O1(+) cell counts, the expression of myelin proteins such as myelin basic protein, proteolipid protein, and 2'3'-cyclic nucleotide phosphodiesterase, including transcription factors such as MyT1 and Gtx, was less in the LPS group at late postnatal days, indicating severe hypomyelination in the developing rat brain when compared with NAC + LPS and control groups. Collectively, these data support the hypothesis that NAC may provide neuroprotection and attenuate the degeneration of OPCs against LPS evoked inflammatory response and white matter injury in developing rat brain. Moreover, these data suggest the possible use of NAC as a treatment for pregnant women with maternal or placental infection as a means of minimizing the risk of PVL and CP.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge