Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2013

Neuroprotective effect of kaempferol glycosides against brain injury and neuroinflammation by inhibiting the activation of NF-κB and STAT3 in transient focal stroke.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Lu Yu
Chu Chen
Liang-Fen Wang
Xi Kuang
Ke Liu
Hao Zhang
Jun-Rong Du

Parole chiave

Astratto

BACKGROUND

Ischemic brain injury is associated with neuroinflammatory response, which essentially involves glial activation and neutrophil infiltration. Transcription factors nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) contribute to ischemic neuroinflammatory processes and secondary brain injury by releasing proinflammatory mediators. Kaempferol-3-O-rutinoside (KRS) and kaempferol-3-O- glucoside (KGS) are primary flavonoids found in Carthamus tinctorius L. Recent studies demonstrated that KRS protected against ischemic brain injury. However, little is known about the underlying mechanisms. Flavonoids have been reported to have antiinflammatory properties. Herein, we explored the effects of KRS and KGS in a transient focal stroke model.

RESULTS

Rats were subjected to middle cerebral artery occlusion for 2 hours followed by 22 h reperfusion. An equimolar dose of KRS or KGS was administered i.v. at the beginning of reperfusion. The results showed that KRS or KGS significantly attenuated the neurological deficits, brain infarct volume, and neuron and axon injury, reflected by the upregulation of neuronal nuclear antigen-positive neurons and downregulation of amyloid precursor protein immunoreactivity in the ipsilateral ischemic hemisphere. Moreover, KRS and KGS inhibited the expression of OX-42, glial fibrillary acidic protein, phosphorylated STAT3 and NF-κB p65, and the nuclear content of NF-κB p65. Subsequently, these flavonoids inhibited the expression of tumor necrosis factor α, interleukin 1β, intercellular adhesion molecule 1, matrix metallopeptidase 9, inducible nitric oxide synthase, and myeloperoxidase.

CONCLUSIONS

Our findings suggest that postischemic treatment with KRS or KGS prevents ischemic brain injury and neuroinflammation by inhibition of STAT3 and NF-κB activation and has the therapeutic potential for the neuroinflammation-related diseases, such as ischemic stroke.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge