Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Steroid Biochemistry and Molecular Biology 2017-Jul

Neurotoxicity of the steroidal alkaloids tomatine and tomatidine is RIP1 kinase- and caspase-independent and involves the eIF2α branch of the endoplasmic reticulum.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Daniela Correia da Silva
Paula B Andrade
Patrícia Valentão
David M Pereira

Parole chiave

Astratto

Steroidal alkaloids are a class of natural products that occur in several species of the Solanaceae family. In the case of the tomato plant (Lycopersicon esculentum Mill.), tomatine and its aglycone, tomatidine, are the most representative molecules. These steroidal alkaloids have already shown several potentially useful biological activities, from anticancer to anti-inflammatory or antibacterial. In this work, the toxicity of these molecules in neuronal cells, namely in the neuroblastoma cell line SH-SY5Y, was assessed, emphasis being given to the cellular mechanisms underlying the effects observed. The results show that tomatine/tomatidine-induced cell death is caspase- and RIP1 kinase-independent, as cell death is not prevented by the pan-caspase inhibitor Z-VAD.fmk or by RIP1 inhibitor necrostatin-1. Analysis of Ca2+ levels using the fluorescent probe Fura-2/AM indicates that both tomatine and tomatidine have a marked effect upon Ca2+ homeostasis by increasing cytosolic Ca2+, an event that might be associated with their effect upon the endoplasmic reticulum. We show that the toxicity of these molecules require the PERK/eIF2α branch of the unfolded protein response, but not the IRE1α branch. Given the role of the endoplasmic reticulum in proteostasis, the ability of these molecules to inhibit the proteasome was also evaluated. Tomatine was able to inhibit the chymotrypsin-like catalytic core of purified human 20S proteasome, as shown by its ability to prevent degradation of the fluorogenic substrate Suc-Leu-Leu-Val-Tyr-AMC, thus suggesting that interference with proteostasis can be responsible for the toxicity of these steroidal alkaloids. This study is relevant as it sheds a light regarding the toxicity of molecules present in one of the most consumed plants worldwide.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge