Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Plant Physiology 2009-Jul

New transgenic line of Arabidopsis thaliana with partly disabled zeaxanthin epoxidase activity displays changed carotenoid composition, xanthophyll cycle activity and non-photochemical quenching kinetics.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Beatrycze Nowicka
Wojciech Strzalka
Kazimierz Strzalka

Parole chiave

Astratto

Zeaxanthin epoxidase (ZE, E.C. 1.14.13.90), an enzyme belonging to the lipocalin superfamily, catalyses the conversion of zeaxanthin to antheraxanthin and violaxanthin. These reactions are part of the xanthophyll biosynthetic pathway and the xanthophyll cycle. The role of carotenoids in the dissipation of excessive light energy has been widely studied using mutants with a disabled carotenoid biosynthetic pathway. In this paper, the transgenic line MaZEP7 with partially disabled ZE activity is described and compared with wild-type plants and npq2 mutant lacking active ZE. We examined the presence and the abundance of aba1 transcripts, measured pigment composition, xanthophyll cycle functioning and chlorophyll fluorescence in all three lines. The MaZEP7 line contains additional copies of the aba1 gene introduced by agroinfiltration, but no enhanced aba1 transcript level was observed. In addition, ZE activity in MaZEP7 was impaired, resulting in an altered xanthophyll profile. In dark-adapted plants, violaxanthin and neoxanthin levels were lower than in wild-type plants, whereas antheraxanthin and zeaxanthin levels were considerably higher. The presence of lutein epoxide was also observed. Violaxanthin levels changed only minimally during light exposition, whereas antheraxanthin was converted to zeaxanthin and there was no epoxidation during the course of the experiment indicating disturbed xanthophyll cycle functioning. The amounts of carotenoids and chlorophylls on a dry weight basis and chl a/chl b ratio were similar in all lines. The presence of epoxidated pigments in MaZEP7 plants indicates that epoxidation occurs, but it is likely very slow. Chlorophyll fluorescence measurements showed that the dependence of electron transport rates on light intensity for the MaZEP7 line resembled the npq2 mutant. Kinetic measurements showed that the MaZEP7 line exhibited very rapid induction and a high steady-state value of non-photochemical quenching.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge