Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1976-Oct

Nitrate Reductase Activity in Maize (Zea mays L.) Leaves: II. Regulation by Nitrate Flux at Low Leaf Water Potential.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
D L Shaner
J S Boyer

Parole chiave

Astratto

Experiments were conducted to determine whether the nitrate flux to the leaves or the nitrate content of the leaves regulated the nitrate reductase activity (NRA) in leaves of intact maize (Zea mays L.) seedlings having low water potentials (psi(w)) when other environmental and endogenous factors were constant. In seedlings that were desiccated slowly, the nitrate flux, leaf nitrate content, and NRA decreased as psi(w) decreased. The decrease in nitrate flux was caused by a decrease in both the rate of transpiration and the rate of nitrate delivery to the transpiration stream. Upon rewatering, the recovery in NRA was correlated with the nitrate flux but not the leaf nitrate content.Recovery depended on protein synthesis, since recovery could be prevented in excised leaves if an inhibitor of protein synthesis was present. However, it also depended on a high nitrate flux, since recovery could be prevented if there was no nitrate flux, despite a relatively high, constant leaf nitrate content, a high psi(w), and the absence of an inhibitor of protein synthesis.The synthesis of NRA could be increased at low psi(w) if seedlings were desiccated in the presence of additional nitrate, which increased the nitrate flux to the leaves. Since the decrease in NRA at low psi(w) could be relieved by increasing the nitrate flux and recovery also depended on nitrate flux, the inhibition of NRA at low psi(3) was not controlled by a direct effect of psi(w) on protein synthesis nor by alterations in the leaf nitrate content, but rather by a decrease in the nitrate flux that in turn regulated the synthesis of the enzyme.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge