Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Quarterly Journal of Nuclear Medicine and Molecular Imaging 2012-Apr

PET with radiolabeled aminoacid.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
F Crippa
A Alessi
G L Serafini

Parole chiave

Astratto

Since the clinical introduction of FDG, neuroimaging has been the first area of PET application in oncology. Later, while FDG-PET became progressively a key imaging modality in the management of the majority of malignancies outside the brain, its neuro-oncologic indications faced some limitations because of the unfavourable characteristics of FDG as brain tumor-seeking agent. PET applications in neuro-oncology have received new effectiveness by the advent of positron-emission labelled amino acids, so that it has been coined the term "Amino acid PET" to differentiate this imaging tool from FDG-PET. Radiolabeled amino acids are a very interesting class of PET tracers with great diagnostic potential in neuro-oncology because of their low uptake in normal brain and, conversely, high uptake in most brain tumors including low-grade gliomas. The present article surveys the results obtained using L-[methyl-11C]Methionine (MET), that has been the ancestor of PET amino acid tracers and is still the most popular amino acid imaging modality in oncology, and stresses the important role that this diagnostic modality can play in the evaluation of brain tumors. However, the use of MET is restricted to PET centers with an in-house cyclotron and radiochemistry facility, because of the short half-life (20 min) of 11C. The promising results of MET have stimulated the development of 18F-labelled aminoacid tracers, particularly O-(2-18F-fluoeoethyl1)-L-tyrosine (FET), that has the same properties of MET and, thanks to the longer half-life of 18F (about 110 min), allows a distribution strategy from a production tracer site to user satellite PET centers. Considering a more widespread use of Amino acid PET, together with the recent development of integrated PET-MRI imaging systems, and the oncoming clinical validation of other interesting PET tracers, i.e. FMISO or 18F-FAZA for hypoxia imaging and FLT for tumor proliferation imaging, it can be reasonably expected that metabolic imaging with PET is close to becoming a key diagnostic modality in the management of brain tumors, as has already been for Total Body FDG-PET/CT in extra-brain oncology.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge