Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Applied Physiology 2005-Jul

Perinatal hyperoxia for 14 days increases nerve conduction time and the acute unitary response to hypoxia of rat carotid body chemoreceptors.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
David F Donnelly
Insook Kim
Claire Carle
John L Carroll

Parole chiave

Astratto

Hyperoxia in the immediate perinatal period, but not in adult life, is associated with a life-long impairment of the ventilatory response to acute hypoxia. This effect is attributed to a functional impairment of peripheral chemoreceptors, including a reduction in the number of chemoreceptor afferent fibers and a reduction in "whole nerve" afferent activity. The purpose of the present study was to assess the activity levels of single chemoreceptor units in the immediate posthyperoxic period to determine whether functional impairment extended to single chemoreceptor units and whether the impairment was only induced by hyperoxia exposure in the immediate postnatal period. Two groups of rat pups were exposed to 60% inspired O2 fraction for 2 wk at ages 0-14 days and 14-28 days, at which time single-unit activities were isolated and recorded in vitro. Compared with control pups, hyperoxia-treated pups had a 10-fold reduction in baseline (normoxia) spiking activity. Peak unit responses to 12, 5, and 0% O2 were reduced and nerve conduction time was significantly slower in both hyperoxia-treated groups compared with control groups. We conclude that 1) hyperoxia greatly reduces single-unit chemoreceptor activities during normoxia and acute hypoxia, 2) the treatment effect is not limited to the immediate newborn period, and 3) at least part of the impairment may be due to changes in the afferent axonal excitability.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge