Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer Chemotherapy and Pharmacology 2008-Apr

Potentiation of arsenic trioxide cytotoxicity by Parthenolide and buthionine sulfoximine in murine and human leukemic cells.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Markus Duechler
Małgorzata Stańczyk
Małgorzata Czyz
Maciej Stepnik

Parole chiave

Astratto

OBJECTIVE

To possibly increase the in vitro cytotoxic activity of arsenic trioxide (ATO) by combining it with Parthenolide (PRT), a known NF-kappaB inhibitor and buthionine sulfoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase.

METHODS

Several cell lines representing various hematological malignancies were treated in vitro with the study drugs alone or in combinations. Flow cytometry was used to assess cell death rates and reative oxygen species production. Glutathione and ATP levels were determinded using a photometric and a luminometric assay, respectively. Cell death was characterised by fluorescence microscopy and DNA fragmentation analysis.

RESULTS

PRT increased cytotoxicity of ATO in seven out of eight cell lines. Addition of buthionine sulfoximine (BSO) further potentiated cytotoxicity of the combined treatment. When combined with PRT and BSO, clinically achievable concentrations of ATO (2.5 microM) induced cytotoxicity rates of 80-98% after 24 h. Importantly, lymphocytes from healthy donors were largely unaffected by these treatment modalities, also after growth stimulation in cell culture. N-acetylcysteine inhibited the cytotoxic effects of the triple combination. Treatment of leukemic cells with ATO, PRT and BSO rapidly depleted cells from glutathione, induced oxidative stress and decreased intracellular ATP levels. Cell death showed characteristics of necrosis presumably as a result of ATP loss.

CONCLUSIONS

Based on the observed selectivity towards malignant cells this combination may offer a therapeutic option applicable to different kinds of leukemia.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge