Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Eye Research 2017-Jan

Protective Role of Hinokitiol Against H2O2-Induced Injury in Human Corneal Epithelium.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Yufeng Xu
Shengzhan Wang
Qi Miao
Kai Jin
Lixia Lou
Xin Ye
Yan Xi
Juan Ye

Parole chiave

Astratto

We recently found that hinokitiol has anti-inflammatory activity in human corneal epithelial (HCE) cells. Herein, we investigated the protective role of hinokitiol against H2O2-induced injury in HCE cells and the mechanisms that underlie its action.

HCE cells were incubated with different concentrations of hinokitiol or dimethylsulfoxide (DMSO), which served as a vehicle control, before H2O2 stimulus. The cell viability was evaluated using a cell counting kit-8 (CCK-8) assay. TUNEL, phosphorylated histone γH2A.X, cleaved caspase-3 expression analyses, and location of cytochrome c were conducted to detect cell injury and apoptosis. Reactive oxygen species (ROS), catalase (CAT), superoxide dismutase (SOD), methane dicarboxylic aldehyde (MDA), and total antioxidative capacity (T-AOC) were used to determine oxidative stress. Bcl-2 and Bax protein expressions were measured by western blotting.

Hinokitiol significantly improved the cell viability, decreased the apoptosis rate, inhibited DNA damage, and reduced cleaved caspase-3 expression and the leakage of cytochrome c from mimitochondrion to cytoplasm of HCE cells against the oxidative stress induced by H2O2. Generation of ROS and MDA and decreased activity of CAT, SOD, and T-AOC were also ameliorated by hinokitiol administration. Moreover, Bcl-2 expression was down-regulated while Bax was up-regulated by H2O2 stimulus, which were reversed by hinokitiol application.

Hinokitiol protects HCE cells against H2O2-induced injury likely by its antioxidant activity and modulating the Bcl-2 signaling pathway.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge