Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chinese Journal of Contemporary Pediatrics 2008-Apr

[Protective effect of fructose-1,6-diphosphate against ultrastructural damage in the hippocampus of rats with repeated febrile seizures].

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Jian-Ping Zhou
Fan Wang
Lin Yang
Shao-Ping Huang
Rui-Lin Li

Parole chiave

Astratto

OBJECTIVE

Fructose-1, 6-diphosphate (FDP), serving as a cellular energy substance, has shown its roles in the treatment of hypoxic-ischemic encephalopathy and myocardial damage. The present study aimed at exploring the potentiality of the protective effect of FDP against ultrastructural damage of the hippocampus caused by febrile seizures (FS) in rats.

METHODS

Thirty-six 21-day-old male Sprague-Dawley rats were randomly divided into three groups: untreated FS (control), high-dose FDP-treated FS and low-dose FDP-treated FS. FS were induced by hyperthermal bath. Thirty minutes before FS induction, rats in the high-dose and low-dose FDP-treated groups received a peritoneal injection of FDP at a dosage of 50 and 25 mg per 100 g of body weight respectively, whereas the same volume of 0.9% sodium chloride solution were injected to the rats in the control group. Transmission electron microscopy was used to examine the ultrastructural pathologic changes of neurons and organelles as well as the features of synaptic morphological parameters in the hippocampal CA1 area.

RESULTS

Neuronal degeneration and necrosis, mitochondria swelling, polyribosomes disaggregation from endoplasmic reticula, and golgiosomes dilation in the hippocampal CA1 area in the two FDP intervention groups were less severe compared with the control group. FDP treatment resulted in significant increases in postsynaptic density thickness (F=12.47, P<0.01), synaptic active zone length (F=14.75, P<0.01) and synaptic interface curvature (F=3.77, P<0.05), as well as a shorter interspace of neural synapses (F=7.29, P<0.01) when compared with the control group. There were no significant differences in the ultrastructural changes between the two FDP treatment groups.

CONCLUSIONS

FDP can ameliorate ultrastructural damage in the hippocampus caused by FS in rats. However, further research is warranted for a reasonable and effective dosage of FDP.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge