Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pflugers Archiv European Journal of Physiology 2000-Mar

Protein kinase-dependent phosphorylation and cannabinoid receptor modulation of potassium A current (IA) in cultured rat hippocampal neurons.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
J Mu
S Y Zhuang
R E Hampson
S A Deadwyler

Parole chiave

Astratto

The potent cannabinoid receptor agonist WIN 55,212-2 produces positive shifts in steady-state inactivation of the potassium A current (IA) in rat hippocampal neurons via an adenosine 3',5'-cyclic monophosphate (cAMP)-, protein kinase A (PKA)-dependent process. This effect is probably mediated by phosphorylation or dephosphorylation of the IA channel protein. The role of protein phosphorylation in this cascade was tested by testing cannabinoid actions in cultured hippocampal neurons (pyramidal cells) that were exposed also to either the catalytic subunit of PKA (PKAc), a PKA-specific phosphorylation inhibitor (IP-20, Walsh peptide), or a potent protein phosphatase inhibitor (okadaic acid). Cannabinoids such as WIN 55,212-2 produce a positive (rightwards) shift in the steady-state inactivation of IA, thus providing increased current at a given membrane voltage. Cells dialyzed with PKAc showed a negative shift in IA inactivation, opposite to that produced by cannabinoids, and similar to that produced by increased levels of cAMP. In addition, PKAc completely blocked the positive shift produced by WIN 55,212-2. In contrast, dialysis of cells with IP-20 produced a positive shift in steady state inactivation of IA, similar to that produced by WIN, but the effects were not additive with cannabinoid receptor activation. The phosphatase inhibitor, okadaic acid produced a small negative shift in IA steady-state inactivation when administered alone, and blocked the positive shift produced by WIN 55,212-2. Okadaic acid also enhanced the negative shift in IA inactivation when co-administered with forskolin. The effects of okadaic acid and WIN 55,212-2 were not additive, suggesting a common pathway. These results demonstrate that IA is altered by direct manipulations of the phosphorylation status of the channel protein, and that cannabinoid effects on IA are probably mediated by dephosphorylation of the IA channel.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge