Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BioMed Research International 2014

Proteomic analysis of gossypol induces necrosis in multiple myeloma cells.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Renhua Xu
Enbing Tian
Haiping Tang
Chongdong Liu
Qingtao Wang

Parole chiave

Astratto

Gossypol is a phenolic aldehyde extracted from plants and is known to be an antitumor agent to induce cancer cell apoptosis. In the present study, multiple myeloma cells were treated with gossypol, which resulted in an increase of cellular reactive oxygen species (ROS) and cell necrosis. Quantitative proteomic analysis was carried out to identify differentially expressed proteins between untreated and gossypol-treated cells. Proteomic analysis identified 4330 proteins, in which 202 proteins are upregulated and 383 proteins are downregulated in gossypol-treated cells as compared to the untreated cells. Importantly, proteomic and western blot analysis showed that apoptosis regulators BAK and Bax were upregulated in gossypol-treated cells, indicating that Bcl-2 associated death pathway was activated. Similarly, gossypol also induced upregulations of DNA mismatch repair proteins and DNA replication licensing factor, suggesting that gossypol caused significant DNA damage. Furthermore, upregulations of HLA class I and class II histocompatibility antigens and beta-2-microglobulin were observed in gossypol-treated cells, indicating that gossypol has a novel function to activate cellular immune responses. Our data demonstrate that the execution of necrosis is a complex process involving ROS, DNA damage, and Bcl-2 family proteins. Gossypol-activated immune responses are a potential new approach for multiple myeloma chemotherapy.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge