Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1992-Dec

Reconstitution and Characterization of a Calmodulin-Stimulated Ca-Pumping ATPase Purified from Brassica oleracea L.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
P Askerlund
D E Evans

Parole chiave

Astratto

Purification and functional reconstitution of a calmodulin-stimulated Ca(2+)-ATPase from cauliflower (Brassica oleracea L.) is described. Activity was purified about 120-fold from a microsomal fraction using calmodulin-affinity chromatography. The purified fraction showed a polypeptide at 115 kD, which formed a phosphorylated intermediate in the presence of Ca(2+), together with a few polypeptides with lower molecular masses that were not phosphorylated. The ATPase was reconstituted into liposomes by 3-([cholamidopropyl]-dimethylammonio-)1-propanesulfonate (CHAPS) dialysis. The proteoliposomes showed ATP-dependent Ca(2+) uptake and ATPase activity, both of which were stimulated about 4-fold by calmodulin. Specific ATPase activity was about 5 mumol min(-1) (mg protein)(-1), and the Ca(2+)/ATP ratio was 0.1 to 0.5 when the ATPase was reconstituted with entrapped oxalate. The purified, reconstituted Ca(2+)-ATPase was inhibited by vanadate and erythrosin B, but not by cyclopiazonic acid and thapsigargin. Activity was supported by ATP (100%) and GTP (50%) and had a pH optimum of about 7.0. The effect of monovalent and divalent cations (including Ca(2+)) on activity is described. Assay of membranes purified by two-phase partitioning indicated that approximately 95% of the activity was associated with intracellular membranes, but only about 5% with plasma membranes. Sucrose gradient centrifugation suggests that the endoplasmic reticulum is the major cellular location of calmodulin-stimulated Ca(2+)-pumping ATPase in Brassica oleracea inflorescences.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge