Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Inflammation Research 2007-Aug

Role of Toll-like receptor 4 in hyperoxia-induced lung inflammation in mice.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Y Ogawa
S Tasaka
W Yamada
F Saito
N Hasegawa
T Miyasho
A Ishizaka

Parole chiave

Astratto

OBJECTIVE

Prolonged exposure to hyperoxia causes lung inflammation, but the role of Toll-like receptor 4 (TLR4) in hyperoxia-induced signal transduction remains unclear.

METHODS

We evaluated neutrophil accumulation, signal transduction and cytokine production during hyperoxia, comparing TLR4 mutant (C3H/HeJ) and wild type (C3H/HeN) mice.

METHODS

The mice were exposed to 80% oxygen in a hyperoxic chamber for 0 (control), 48, or 96 h. After the exposure, bronchoalveolar lavage (BAL) was performed for differential cell counting and cytokine measurement. In lung homogenate, activation of NF-kappaB and STAT1 was also examined.

RESULTS

In C3H/HeJ mice, hyperoxia-induced neutrophil accumulation in BAL fluid was significantly decreased compared with C3H/HeN. Hyperoxia for 96 h caused NF-kappaB translocation in C3H/HeN mice, which was significantly attenuated in C3H/HeJ mice (p < 0.05). In contrast, STAT1 activation occurred as early as after 48 h of oxygen exposure, which did not differ between the two strains. The levels of TNF-alpha, IL-6, and KC in BAL fluid were increased after oxygen exposure, which was suppressed by the lack of TLR4 signaling.

CONCLUSIONS

These results suggest that TLR4-dependent NF-kB activation may be an important process of the upregulation of proinflammatory mediators and subsequent neutrophil accumulation into the lung during hyperoxia.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge