Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Behavioural Brain Research 2005-May

Secondary hypoxia exacerbates acute disruptions of energy metabolism in rats resulting from fluid percussion injury.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Richard A Bauman
John Widholm
Joseph B Long

Parole chiave

Astratto

The purpose of these experiments was to determine whether secondary hypoxia exacerbates the metabolic consequences of fluid percussion injury (FPI). In Experiment I, rats were trained to press a lever for their entire daily ration of food at any time during a 12-h light/dark cycle and run in an activity wheel. After food intake and body weight stabilized, rats were surgically prepared, assigned to one of four groups [FPI+Hypoxia (IH), FPI+Normoxia (IN), Sham Injury+Hypoxia (SH), Sham Injury+Normoxia (SN)] and, after recovery from surgery, anesthetized with halothane delivered by a 21% O2 source. Immediately after injury or sham injury, the O2 source was switched to 13% for rats in Groups IH and SH for 30 min. Post-traumatic hypoxemia exacerbated the ensuing FPI-induced reductions of food intake and body weight, but did not change FPI-induced reduction in wheel running. In Experiment II, rats were assigned to one of three groups (SH, IN, or IH) and subjected to sham injury and 13% O2 or FPI and either 13 or 21% O2. Immediately after 30 min of hypoxia or normoxia, rats were confined to metabolism cages that were used to quantify rates of oxygen consumption (VO2), carbon dioxide production (VCO2), and heat production (H). Post-traumatic hypoxia exacerbated the FPI-induced increases in VO2, VCO2, and H. The results of Experiments I and II provide convergent confirmation that secondary hypoxemia exacerbates the FPI-induced hypermetabolic state in rats and therefore might significantly exacerbate the brain injury-induced disruptions of energy metabolism in humans.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge