Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neuroscience 2005

Seizures, not hippocampal neuronal death, provoke neurogenesis in a mouse rapid electrical amygdala kindling model of seizures.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
P D Smith
K J McLean
M A Murphy
A M Turnley
M J Cook

Parole chiave

Astratto

OBJECTIVE

Proliferation of neural precursors adjacent to the granule cell layer of the dentate gyrus has been identified in previous epilepsy models. Convincingly demonstrating that seizure activity is the stimulant for neurogenesis, rather than neuronal death or other insults inherent to seizure models, is difficult. To address this we derived a rapid electrical amygdala kindling model in mice known to be resistant to seizure-induced neuronal death as an experimental model of focal seizures and to analyze subsequent neurogenesis.

METHODS

Mice were implanted with bipolar electrodes in the left amygdala and given electrical stimulation (3 s, 100 Hz, 1 ms monophasic square wave pulses every 5 min, 40 in total) while being observed and graded for the development of seizures. Neurogenesis in the hippocampus was assessed by counting bromodeoxyuridine-immunoreactive cells co-labeled for astrocyte (glial fibrillary acidic protein) and neuronal nuclear markers.

RESULTS

Bromodeoxyuridine-reactive cell numbers were three-fold higher in stimulated mice compared with controls at 1 week in the subgranular region and at three weeks extensive co-labeling with neuronal nuclear was noted in cells which had migrated into the body of the granule cell layer, while mice receiving stimulation but failing to kindle did not differ significantly from controls. No increase in neuronal death was detected by terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labeling, Fluorojade or fluorescent examination of hematoxylin and eosin-stained sections in any inter-group comparison.

CONCLUSIONS

We propose that this kindling paradigm, not previously applied to mice, demonstrates more convincingly than previously the surge in neurogenesis in response to seizures, and the effects of seizures alone in regard to neuronal injury and regeneration.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge