Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Advances in Experimental Medicine and Biology 2000

Sensitivity of different vascular beds in the eye to neovascularization and blood-retinal barrier breakdown in VEGF transgenic mice.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
S A Vinores
N L Derevjanik
M A Vinores
N Okamoto
P A Campochiaro

Parole chiave

Astratto

Neovascularization (NV) causes visual deficits in ocular disorders such as diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity. An understanding of the angiogenic factors promoting this abnormal vascular growth is necessary to devise a therapeutic approach to inhibit NV. One factor known to promote NV is vascular endothelial growth factor (VEGF), which can also induce a breakdown of the blood-retinal barrier (BRB) leading to macular edema, another major cause of visual loss in a variety of ocular disorders. To investigate the role of VEGF on ocular NV, transgenic mice have been produced that over-express VEGF in the photoreceptors under control of the rhodopsin promoter. Eyes from these mice and from littermates not expressing the transgene were examined using immunohistochemistry, griffonia simplicifolia isolectin-B4 (GSA) staining to clearly visualize vessels, and electron microscopy. Levels of transgene expression were determined by the polymerase chain reaction. In normal mice, retinal vessels are organized into a superficial and a deep capillary bed with some vessels forming a shunt between both beds. In a transgenic line of mice that over-expresses VEGF (V-6), NV originates from the deep capillary bed at about postnatal day 10 (P10) and extends through the photoreceptor layer to form vascular complexes in the subretinal space with BRB breakdown occurring only in the area of NV. The superficial capillary bed and the choroidal vasculature are unaffected. In another line of transgenic mice with a higher expression rate of VEGF (V-24), photoreceptor degeneration begins at P7-8, soon after the onset of transgene expression, without widespread NV, as was observed in V-6 mice. In conclusion, overexpression of VEGF in transgenic mice is sufficient to cause retinal NV, but only the deep capillary bed is responsive. Increasing the expression of VEGF does not necessarily increase the amount of NV. A better understanding of the specific factors and conditions that result in a particular pattern of ocular NV may provide clues regarding the pathogenesis of ocular neovascular disease.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge