Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Trauma and Acute Care Surgery 2012-Aug

Similar effects of hypertonic saline and mannitol on the inflammation of the blood-brain barrier microcirculation after brain injury in a mouse model.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Joshua A Marks
Shenghui Li
Wanfeng Gong
Paymon Sanati
Rachel Eisenstadt
Carrie Sims
Douglas H Smith
Patrick M Reilly
Jose L Pascual

Parole chiave

Astratto

BACKGROUND

There has been substantial debate regarding the efficacy of hypertonic saline (HTS) versus mannitol (MTL) in treating moderate and severe traumatic brain injury (TBI). HTS blunts polymorphonuclear neutrophil (PMN) and endothelial cell (EC) activation and reduces tissue edema after resuscitated shock in systemic microvascular beds. MTL also modulates PMN activation markers. It remains unknown if either of these osmotherapies exert similar anti-inflammatory effects along the blood-brain barrier (BBB). We hypothesized that HTS, as compared with MTL, would more greatly reduce PMN-EC interactions, thereby reducing BBB permeability and tissue edema after simulated TBI.

METHODS

CD1 male mice (25-30 g) underwent craniotomy and window placement for observation of in vivo PMN-EC interactions in pial venules using intravital video microscopy. TBI was simulated through local suffusion of the brain surface with interleukin 1β (100 ng/0.1 mL). Animals were randomized to receive a single, equiosmolar, intravenous dose of 20% MTL or 5% HTS after injury. Live microcirculatory footage was obtained every 15 minutes for 2 hours, after which fluorescent-labeled albumin was administered to assess microvascular permeability. PMN rolling and adhesion and macromolecular leakage were analyzed offline by a blinded observer and postmortem brain and lung edema assessed by wet-to-dry ratios. Student's t test and Mann-Whitney U test determined significance (p ≤ 0.05).

RESULTS

Neither osmotherapy resulted in significant differences in PMN rolling or adhesion; however, both trended higher in HTS. Similarly, vessel permeability did not differ between groups but also trended higher with HTS. In contrast, brain and lung edema was greater in MTL than HTS as compared with controls (p = 0.05).

CONCLUSIONS

MTL and HTS have indistinguishable effects on PMN-EC interactions in the brain after simulated TBI. Additional studies are needed to determine if either osmotherapy has more subtle effects on BBB PMN-EC interactions after injury exerting a potential clinical advantage.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge