Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1988-Dec

Sodium and potassium compartmentation and transport in the roots of intact lettuce plants.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
D Lazof
J M Cheeseman

Parole chiave

Astratto

In this report, we consider the accumulation in roots, and transport to the shoot, of Na(+) and K(+) in intact lettuce plants (Lactuca sativa cv Black-seeded Simpson). Plants were grown in modified Hoagland medium supplemented with 10 moles NaCl per cubic meter. At this salinity, significant levels of Na(+) were accumulated in roots and shoots, but there was no reduction in plant growth. Transport characteristics for both Na(+) and K(+) were qualitatively similar to those previously reported, for Spergularia marina, indicating that the results obtained with these experimental protocols are not limited to one unconventional experimental plant. The most pronounced difference in transport of the two ions was evident when transport was followed in a chase period after a 10 minute uptake pulse. For Na(+), there was an initially rapid, but small, loss of label to the medium, and very little movement to the shoot. For K(+), little label was lost from the plants, but translocation to the shoot proceeded for at least 60 minutes. The transport systems were further distinguished by treating the roots during labeling with 20 micrograms per milliliter cycloheximide. For K(+), both uptake and translocation were reduced by about 50%. For Na(+), root accumulation was stimulated more than five-fold, while transport to the shoot was reduced about 20%. Cycloheximide also modified the Na(+) transport characteristics such that continued translocation occurred during the chase period of pulse-chase studies.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge