Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neuroscience 1996-Jan

Spine loss in experimental epilepsy: quantitative light and electron microscopic analysis of intracellularly stained CA3 pyramidal cells in hippocampal slice cultures.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
A Drakew
M Müller
B H Gähwiler
S M Thompson
M Frotscher

Parole chiave

Astratto

The sequence of neuronal alterations resulting from epileptic activity is poorly understood. In the hippocampus of some epileptic patients, there is a loss of certain neuronal types in the hilar region and in CA3. The neuronal alterations preceding this degeneration probably affect synaptic structures. Here we have estimated the number of dendritic spines, major postsynaptic elements of hippocampal neurons, in defined dendritic segments of identified (intracellularly stained) CA3 pyramidal neurons in "epileptic" slice cultures of hippocampus and in control cultures. Slice cultures were prepared from five- or six-day-old rat pups and maintained in vivo for 23 days before epileptic activity was induced by application of the convulsants bicuculline and picrotoxin for three days. Individual CA3 pyramidal neurons were then intracellularly injected with horseradish peroxidase, and the number of dendritic spines was counted in proximodistal dendritic segments by applying the Sholl method. In addition, the total dendritic length was measured and the branching index evaluated. The number of spines on CA3 pyramidal cell dendrites in the "epileptic" cultures was found to be decreased by 40%. This spine loss affected proximal and peripheral dendritic segments of the CA3 pyramidal neurons to a similar extent. No significant differences were observed between control and "epileptic" cultures in dendritic length or in the branching index. Quantitative electron microscopic analysis did not reveal differences between "epileptic" cultures and control cultures in the spine area of the labelled CA3 pyramidal cells, indicating that there was a real spine loss, not just a reduction in the size of the spines. We conclude that epileptic activity causes morphological alterations in defined postsynaptic compartments of hippocampal pyramidal cells surviving under these conditions.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge