Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pediatric Research 2003-Oct

Sternohyoid muscle fatigue properties of dy/dy dystrophic mice, an animal model of merosin-deficient congenital muscular dystrophy.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Erik van Lunteren
Michelle Moyer

Parole chiave

Astratto

Humans with merosin-deficient congenital muscular dystrophy have both sucking problems during infancy and sleep-disordered breathing during childhood. We hypothesized that merosin-deficient pharyngeal muscles fatigue faster than normal muscles. This was tested in vitro using sternohyoid muscle from an animal model of this disease, the dy/dy dystrophic mouse. Isometric twitch contraction and half-relaxation times were similar for dy/dy and normal sternohyoid. However, rate of force loss during repetitive 25-Hz train stimulation was markedly diminished in dystrophic compared with normal sternohyoid muscle. Furthermore, force potentiation, which occurred during the early portion of the fatigue-inducing stimulation, had a longer duration in dystrophic compared with normal muscle (approximately 60 versus 20 s). As a result of these two processes, at the end of 2 min of stimulation, force of dystrophic muscle had decreased by 8 +/- 5% and that of normal muscle by 69 +/- 4% (p < 0.0001). The potassium-channel blocker, 3,4-diaminopyridine, increased force of dy/dy sternohyoid muscle during twitch and 25-Hz contractions by 148 +/- 20% (p < 0.00001) and 109 +/- 18% (p < 0.00002), respectively. During repetitive 25-Hz stimulation, force of 3,4-diaminopyridine-treated dystrophic muscle remained significantly higher than that of untreated muscle, despite the early force potentiation being eliminated and fatigue being accelerated. Thus, merosin deficiency reduces fatigue and prolongs the duration of force potentiation. The latter alterations may partially preserve the integrity of upper airway muscle function, without which the severity of pharyngeal complications (feeding problems, sleep-related respiratory dysfunction) might be even more pronounced in the human merosin-deficient congenital muscular dystrophies.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge