Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Regulatory Toxicology and Pharmacology 2002-Jun

Styrene respiratory tract toxicity and mouse lung tumors are mediated by CYP2F-generated metabolites.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
George Cruzan
Gary P Carlson
Keith A Johnson
Larry S Andrews
Marcy I Banton
Christopher Bevan
Janette R Cushman

Parole chiave

Astratto

Mice are particularly sensitive to respiratory tract toxicity following styrene exposure. Inhalation of styrene by mice results in cytotoxicity in terminal bronchioles, followed by increased incidence of bronchioloalveolar tumors, as well as degeneration and atrophy of nasal olfactory epithelium. In rats, no effects on terminal bronchioles are seen, but effects in the nasal olfactory epithelium do occur, although to a lesser degree and from higher exposure concentrations. In addition, cytotoxicity and tumor formation are not related to blood levels of styrene or styrene oxide (SO) as measured in chronic studies. Whole-body metabolism studies have indicated major differences in styrene metabolism between rats and mice. The major differences are 4- to 10-fold more ring-oxidation and phenylacetaldehyde pathways in mice compared to rats. The data indicate that local metabolism of styrene is responsible for cytotoxicity in the respiratory tract. Cytotoxicity is seen in tissues that are high in CYP2F P450 isoforms. These tissues have been demonstrated to produce a high ratio of R-SO compared to S-SO (at least 2.4 : 1). In other rat tissues the ratio is less than 1, while in mouse liver the ratio is about 1.1. Inhibition of CYP2F with 5-phenyl-1-pentyne prevents the styrene-induced cytotoxicity in mouse terminal bronchioles and nasal olfactory epithelium. R-SO has been shown to be more toxic to mouse terminal bronchioles than S-SO. In addition, 4-vinylphenol (ring oxidation of styrene) has been shown to be highly toxic to mouse terminal bronchioles and is also metabolized by CYP2F. In human nasal and lung tissues, styrene metabolism to SO is below the limit of detection in nearly all samples, and the most active sample of lung was approximately 100-fold less active than mouse lung tissue. We conclude that styrene respiratory tract toxicity in mice and rats, including mouse lung tumors, are mediated by CYP2F-generated metabolites. The PBPK model predicts that humans do not generate sufficient levels of these metabolites in the terminal bronchioles to reach a toxic level. Therefore, the postulated mode of action for these effects indicates that respiratory tract effects in rodents are not relevant for human risk assessment.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge