Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Food research international (Ottawa, Ont.) 2018-Jun

Survival and interaction of Escherichia coli O104:H4 on Arabidopsis thaliana and lettuce (Lactuca sativa) in comparison to E. coli O157:H7: Influence of plant defense response and bacterial capsular polysaccharide.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Hyein Jang
Karl R Matthews

Parole chiave

Astratto

Shiga toxin-producing Escherichia coli (STEC) has been associated with illnesses and outbreaks linked to fresh vegetables, prompting a growing public health concern. Most studies regarding interactions of STEC on fresh produce focused on E. coli O157:H7. Limited information is available about survival or fitness of E. coli O104:H4, non-O157 pathogen that was linked to one of the largest outbreaks of hemolytic uremic syndrome in 2011. In this study, survival of E. coli O104:H4 was evaluated on Arabidopsis thaliana plant and lettuce for 5 days compared with E. coli O157:H7, and expression of pathogenesis-realted gene (PR1; induction of plant defense response) was examined by reverse transcription quantitative PCR, and potential influence of capsular polysaccharide (CPS) on the bacterial fitness on plant was investigated. Populations of E. coli O104:H4 strains (RG1, C3493, and LpfA) on Arabidopsis and lettuce were significantly (P < 0.05) greater than those of E. coli O157:H7 strains (7386 and sakai) at day 5 post-inoculation, indicating E. coli O104:H4 may have better survival ability on the plants. In addition, the E. coli O104:H4 strains produced significantly (P < 0.05) higher amounts of CPS compared with the E. coli O157:H7 strains. RG1 strain (1.5-fold) initiated significantly (P < 0.05) lower expression of PR1 gene indicating induction of plant defense response compared with E. coli O157:H7 strains 7386 (2.9-fold) and sakai (2.7-fold). Collectively, the results in this study suggests that different level of CPS production and plant defense response initiated by each STEC strain might influence the bacterial survival or persistence on plants. The present study provides better understanding of survival behavior of STEC, particularly E. coli O104:H4, using a model plant and vegetable under pre-harvest conditions with plant defense response.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge