Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Traditional and Complementary Medicine 2013-Oct

The Effects of Plantago major on the Activation of the Neutrophil Respiratory Burst.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Elaine Reina
Nouf Al-Shibani
Eman Allam
Karen S Gregson
Michael Kowolik
L Jack Windsor

Parole chiave

Astratto

Plantago major is a common plant that grows worldwide in temperate zones and is found in fields, lawns, and on the roadsides. Its leaves and seeds have been used in almost all parts of the world for centuries as a wound healer, analgesic, antioxidant, and antibiotic, as well as an immune system modulator, antiviral, antifungal, and anti-inflammatory agent. Baicalein and aucubin are the two most biologically active components of P. major, and both have been shown to have antioxidant, anti-inflammatory, and anticancer properties. Neutrophils have a pivotal role in wound healing and inflammation. Their principal mechanism of host defense is the killing of pathogens via the production of reactive oxygen species (ROS). The aim of the present study was to determine the in vitro effects of P. major extract, baicalein, and aucubin on human neutrophil respiratory burst activity. The cytotoxicity of the agents was assessed by lactate dehydrogenase (LDH) assays. A standard luminol-dependent chemiluminescence (CL) assay was utilized to monitor the respiratory burst of the neutrophils after exposure to P. major extract and its two active ingredients, baicalein and aucubin. Three replicates per group were included in each of the three runs of the experiments and analysis of variance (ANOVA) was used for statistical analysis. P. major and baicalein were not toxic to the cells at any of the concentrations examined. Aucubin was toxic to the cells only at the highest concentration tested (P = 0.0081). However, genistein was toxic to the cells at all of the concentrations examined except for the lowest concentration of 16.9 μg/ml (P = 0.985). P. major (-0.10 ± 0.11), aucubin (0.06 ± 0.16), baicalein (-0.10 ± 0.11), and genistein (-0.18 ± 0.07) all significantly (P < 0.0001) inhibited ROS production from the neutrophils. P. major extract inhibited neutrophil ROS production, as did aucubin and baicalein. Therefore, these components should be investigated further with relation to the regulation of destructive ROS production in conditions such as periodontal disease.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge