Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Toxicology 2017-Nov

The high-production volume fungicide pyraclostrobin induces triglyceride accumulation associated with mitochondrial dysfunction, and promotes adipocyte differentiation independent of PPARγ activation, in 3T3-L1 cells.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Anthony L Luz
Christopher D Kassotis
Heather M Stapleton
Joel N Meyer

Parole chiave

Astratto

Pyraclostrobin is one of the most heavily used fungicides, and has been detected on a variety of produce, suggesting human exposure occurs regularly. Recently, pyraclostrobin exposure has been linked to a variety of toxic effects, including neurodegeneration and triglyceride (TG) accumulation. As pyraclostrobin inhibits electron transport chain complex III, and as mitochondrial dysfunction is associated with metabolic syndrome (cardiovascular disease, type II diabetes, obesity), we designed experiments to test the hypothesis that mitochondrial dysfunction underlies its adipogenic activity. 3T3-L1 cells were differentiated according to standard protocols in the presence of pyraclostrobin, resulting in TG accumulation. However, TG accumulation occurred without activation of the peroxisome proliferator activated nuclear receptor gamma (PPARγ), the canonical pathway mediating adipogenesis. Furthermore, cells failed to express many markers of adipogenesis (PPARγ, lpl, CEBPα), while co-exposure to pyraclostrobin and two different PPARγ antagonists (GW9662, T0070907) failed to mitigate TG accumulation, suggesting TG accumulation occurred through a PPARγ-independent mechanism. Instead, pyraclostrobin reduced steady-state ATP, mitochondrial membrane potential, basal mitochondrial respiration, ATP-linked respiration, and spare respiratory capacity, demonstrating mitochondrial dysfunction, while reduced expression of genes involved in glucose transport (Glut-4), glycolysis (Pkm, Pfkl, Pfkm), fatty acid oxidation (Cpt-1b), and lipogenesis (Fasn, Acacα, Acacβ) further suggested a disruption of metabolism. Finally, inhibition of cAMP responsive element binding protein (CREB), a PPARγ coactivator, partially mitigated pyraclostrobin-induced TG accumulation, suggesting TG accumulation is occurring through a CREB-driven mechanism. In contrast, rosiglitazone, a known PPARγ agonist, induced TG accumulation in a PPARγ-dependent manner and enhanced mitochondrial function. Collectively, these results suggest pyraclostrobin-induced mitochondrial dysfunction inhibits lipid homeostasis, resulting in TG accumulation. Exposures that disrupt mitochondrial function may have the potential to contribute to the rising incidence of metabolic syndrome, and thus more research is needed to understand the human health impact of pyraclostrobin exposure.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge