Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Journal 2010-Oct

The soybean root-specific protein kinase GmWNK1 regulates stress-responsive ABA signaling on the root system architecture.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Yingxiang Wang
Haicui Suo
Yan Zheng
Kaidong Liu
Chuxiong Zhuang
Kristopher T Kahle
Hong Ma
Xiaolong Yan

Parole chiave

Astratto

In humans, members of the WNK protein kinase family are osmosensitive regulators of cell volume homeostasis and epithelial ion transport, and mutation of these proteins causes a rare inherited form of hypertension due to increased renal NaCl re-absorption. A related class of kinases was recently discovered in plants, but their functions are largely unknown. We have identified a root-specific WNK kinase homolog, GmWNK1, in soybean (Glycine max). GmWNK1 expression was detected in the root, specifically in root cells associated with lateral root formation, and was down-regulated by abscisic acid (ABA), as well as by mannitol, sucrose, polyethylene glycol and NaCl. In vitro and in vivo experiments showed that GmWNK1 interacts with another soybean protein, GmCYP707A1, which is a key ABA 8'-hydroxylase that functions in ABA catabolism. Furthermore, 35S-GmWNK1 transgenic soybean plants had reduced lateral root number and length compared with wild-type, suggesting a role of GmWNK1 in the regulation of root system architecture. We propose that GmWNK1 functions to fine-tune ABA-dependent ABA homeostasis, thereby mediating the regulation of the root system architecture by ABA and osmotic signals. The study has revealed a new function of a plant WNK1 gene from the important staple crop soybean, and has identified a new component of a regulatory pathway that is involved not only in ABA signaling, but also in the repression of lateral root formation by an ABA-dependent mechanism distinct from known ABA signaling pathways.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge