Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Integrative Neuroscience 2016-Dec

Theoretical predication of temperature effects on accommodative processes in simulated amyotrophic lateral sclerosis during hypothermia and hyperthermia.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
D I Stephanova
A Kossev

Parole chiave

Astratto

Electrotonic potentials allow the accommodative processes to long-lasting subthreshold polarizing stimuli to be assessed. The present study investigates such potentials in previously simulated cases of amyotrophic lateral sclerosis, termed as ALS1, ALS2 and ALS3, respectively, when the temperature is changed during hypothermia ([Formula: see text]C) and hyperthermia ([Formula: see text]C). The ALS cases are modeled as three progressively severe uniform axonal dysfunctions along the human motor nerve fiber which is simulated by our temperature-dependent multi-layered numerical model. The results show that the polarizing electrotonic potentials in the ALS1 case are quite similar to those in the normal case during hypothermia. Their defining currents are caused by the activation of potassium fast (K[Formula: see text]) and slow (K[Formula: see text]) channels in the nodal and internodal axolemma beneath the myelin sheath. Except in the ALS3 case at 20[Formula: see text]C, where the accommodative processes are blocked by depolarizing stimuli, in the ALS2 and ALS3 cases during hypothermia these stimuli activate the classical "transient" Na[Formula: see text] channels in the nodal and internodal axolemma beneath the myelin sheath. And this leads to action potential generations during the early parts of electrotonic responses in all compartments along the fiber length. Only in the ALS3 case after the termination of long-lasting subthreshold hyperpolarizing stimuli, action potential generations are obtained in the late parts of electrotonic potentials along the fiber length. In comparison to the normal case, in the gradually severe ALS cases, the depolarizing electrotonic potentials gradually increase, while the hyperpolarizing electrotonic potentials gradually decrease during hyperthermia. However, the repetitive firings are not obtained in these polarizing electrotonic potentials. The results show that the accommodative processes to depolarizing stimuli in the ALS3 case are more likely to be blocked during hypothermia than hyperthermia. The results also show that the polarizing electrotonic potentials in the three simulated ALS cases are specific indicators for the motor nerve disease ALS during hypothermia and hyperthermia.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge