Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Pharmaceutics 2018-Sep

Thienopyrimidine-Chalcone Hybrid Molecules Inhibit Fas-Activated Serine/Threonine Kinase: An Approach To Ameliorate Antiproliferation in Human Breast Cancer Cells.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Nashrah Sharif Khan
Parvez Khan
Mohammad Fawad Ansari
Saurabha Srivastava
Gulam Mustafa Hasan
Mohammad Husain
Md Imtaiyaz Hassan

Parole chiave

Astratto

Apoptotic evasion by cancerous cells being one of the striking hallmarks of cancer has turned into a new arena of drug discovery. A large number of pathways reported that govern the apoptotic evasion have been reported. Fas-activated serine/threonine kinase (FASTK) is a member of Ser/Thr kinase family, and it has been implicated in the apoptotic evasion and, hence, the development of cancer. Keeping this in view, a series of novel thienopyrimidine-based chalcones have been synthesized and evaluated to modulate the FASTK mediated apoptotic evasion. Initial screening was done by enzyme inhibition assay and binding studies, which showed that out of 15 synthesized compounds, 3 thienopyrimidine-based chalcone derivatives possess considerably high binding affinity and enzyme inhibitory potential (nM range) for FASTK. Cell proliferation assessment of selected compounds was performed on HEK-293 and MCF-7 cells. For MCF-7 cells, compounds 2, 10, and 12 show IC50 values of 20.22 ± 1.50, 6.52 ± 0.82, and 8.20 ± 0.61 μM, respectively. Annexin-V and PI staining suggested that these molecules induce apoptosis in MCF-7 cells, arrest the cell cycle in the G0/G1 phase, and subsequently inhibit cell migration presumably by inhibiting FASTK and reactive oxygen species production. In conclusion, we have successfully designed, synthesized, and characterized thienopyrimidine-based chalcones that inhibit FASTK and induce apoptosis. These compounds may be exploited as potential anticancer agents.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge