Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Physiology 2009-Oct

Time to fatigue is increased in mouse muscle at 37 degrees C; the role of iron and reactive oxygen species.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Trent F Reardon
David G Allen

Parole chiave

Astratto

Studies exploring the rate of fatigue in isolated muscle at 37 degrees C have produced mixed results. In the present study, muscle fibre bundles from the mouse foot were used to study the effect of temperature on the rate of muscle fatigue. Provided iron was excluded from the solutions, time to fatigue at 37 degrees C was increased compared to 22 degrees C (125 +/- 8% of 22 degrees C fatigue time). In contrast, when iron was present (approximately 1 microM), fatigue was accelerated (68 +/- 10%). Iron can increase reactive oxygen species (ROS), which are believed to accelerate fatigue. The addition of 25-100 microM H(2)O(2) at 22 degrees C reduced time to fatigue to 80-20% of the control, respectively. Iron was added to cultured primary skeletal muscle cells to determine if iron could increase ROS production. Neither iron entry nor ROS production were detected in non-contracting muscle cells. The addition of 8-hydroxyquinoline, which facilitates iron entry, to iron-ascorbic acid solutions caused a rapid rise in intracellular iron and ROS. Our results indicate that time to fatigue in vitro is increased at 37 degrees C relative to 22 degrees C, but the addition of ROS can accelerate fatigue. An increase in muscle iron can accelerate ROS production, which may be important during or following exercise and in haemochromatosis, disuse atrophy and sarcopenia.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge