Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Bone and Mineral Research 1994-May

Transient and localized expression of bone morphogenetic protein 4 messenger RNA during fracture healing.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
T Nakase
S Nomura
H Yoshikawa
J Hashimoto
S Hirota
Y Kitamura
S Oikawa
K Ono
K Takaoka

Parole chiave

Astratto

Temporal and spatial distribution of a gene encoding murine bone morphogenetic protein 4 (mBMP-4) during fracture repair were investigated in mice by RT-PCR and in situ hybridization. For in situ hybridization, fractured ribs and surrounding tissues were decalcified and hybridized with a mBMP-4-specific complementary RNA probe labeled with digoxigenin-11 UTP. mBMP-4 messenger RNA (mRNA) was not detected in ribs without fracture, whereas it was detected only in the early phase of fracture from 12 to 72 h after the onset of fracture before new cartilage or bone formation. The mBMP-4 mRNAs were present in cells distributed in three distinct regions, namely, the proliferating periosteum, the medullary cavity, and the muscles near the fracture site. These BMP-4-positive cells did not express bone gla protein mRNA, which is a marker of the mature osteogenic cell. RT-PCR also showed a transient increase in the level of BMP-4 mRNA in the early phase of fracture repair. The findings provide us with some new information. (1) The BMP-4 gene is produced by less differentiated osteoprogenitor cells, not by differentiated osteoblasts. (2) The BMP-4 gene is enhanced by the impact of fracture and localized in callus-forming tissue before callus formation. Together with the activities of BMP-4, as was previously described, our results suggest that newly produced BMP-4 gene product is one of the local contributing factors in callus formation in the early phase of fracture healing.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge