Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Medicine Reports 2012-Oct

Trichosanthin inhibits DNA methyltransferase and restores methylation-silenced gene expression in human cervical cancer cells.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Yiling Huang
Huamei Song
Huojun Hu
Lei Cui
Chengcheng You
Liming Huang

Parole chiave

Astratto

Epigenetic silencing of tumor suppressor genes is a well-established oncogenic process and the reactivation of tumor suppressor genes that have been silenced by promoter methylation is an attractive molecular target for cancer therapy. In this study, we investigated the demethylation activity of trichosanthin (TCS, the main bioactive component isolated from a Chinese medicinal herb) and its possible mechanism of action in cervical cancer cell lines. HeLa human cervical adenocarcinoma and CaSki human cervical squamous carcinoma cells were treated with various concentrations (0, 20, 40 and 80 µg/ml) of TCS for 48 h and the mRNA and protein expression levels of the tumor suppressor genes adenomatous polyposis coli (APC) and tumor suppressor in lung cancer 1 (TSLC1) were detected using reverse transcription (RT)-PCR and western blotting, respectively. We analyzed the methylation status of APC and TSLC1 using methylation-specific PCR (MSP). The expression levels and enzyme activity of DNA methyltransferase 1 (DNMT1) were also examined. The mRNA and protein expression levels of APC and TSLC1 were increased following treatment with various concentrations (0, 20, 40 and 80 µg/ml) of TCS for 48 h. The expression of the APC gene increased 2.55±0.29-, 3.44±0.31- and 4.36±0.14-fold, respectively. The expression of the TSLC1 gene increased 2.28±0.15-, 4.23±0.88- and 6.09±0.23-fold, respectively. MSP detection showed that TCS induced demethylation in HeLa and CaSki cells and that this demethylation activity was accompanied by the decreased expression of DNMT1 and reduced DNMT1 enzyme activity. Our experimental results demonstrate for the first time that TCS is capable of restoring the expression of methylation-silenced tumor suppressor genes and is potentially useful as a demethylation agent for the clinical treatment of human cervical cancer.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge