Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Journal 2010-Apr

Two widely expressed plasma membrane H(+)-ATPase isoforms of Nicotiana tabacum are differentially regulated by phosphorylation of their penultimate threonine.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Krzysztof Bobik
Geoffrey Duby
Yannick Nizet
Caroline Vandermeeren
Patrick Stiernet
Justyna Kanczewska
Marc Boutry

Parole chiave

Astratto

The plasma membrane H(+)-ATPases PMA2 and PMA4 are the most widely expressed in Nicotiana plumbaginifolia, and belong to two different subfamilies. Both are activated by phosphorylation of a Thr at the penultimate position and the subsequent binding of 14-3-3 proteins. Their expression in Saccharomyces cerevisiae revealed functional and regulatory differences. To determine whether different regulatory properties between PMA2 and PMA4 exist in plants, we generated two monoclonal antibodies able to detect phosphorylation of the penultimate Thr of either PMA2 or PMA4 in a total protein extract. We also raised Nicotiana tabacum transgenic plants expressing 6-His-tagged PMA2 or PMA4, enabling their individual purification. Using these tools we showed that phosphorylation of the penultimate Thr of both PMAs was high during the early exponential growth phase of an N. tabacum cell culture, and then progressively declined. This decline correlated with decreased 14-3-3 binding and decreased plasma membrane ATPase activity. However, the rate and extent of the decrease differed between the two isoforms. Cold stress of culture cells or leaf tissues reduced the Thr phosphorylation of PMA2, whereas no significant changes in Thr phosphorylation of PMA4 were seen. These results strongly suggest that PMA2 and PMA4 are differentially regulated by phosphorylation. Analysis of the H(+)-ATPase phosphorylation status in leaf tissues indicated that no more than 44% (PMA2) or 32% (PMA4) was in the activated state under normal growth conditions. Purification of either isoform showed that, when activated, the two isoforms did not form hetero-oligomers, which is further support for these two H(+)-ATPase subfamilies having different properties.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge