Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer Gene Therapy 2000-Jan

Vaccinia as a vector for tumor-directed gene therapy: biodistribution of a thymidine kinase-deleted mutant.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
M Puhlmann
C K Brown
M Gnant
J Huang
S K Libutti
H R Alexander
D L Bartlett

Parole chiave

Astratto

Tumor-directed gene therapy, such as "suicide gene" therapy, requires high levels of gene expression in a high percentage of tumor cells in vivo to be effective. Current vector strategies have been ineffective in achieving these goals. This report introduces the attenuated (thymidine kinase (TK)-negative) replication-competent vaccinia virus (VV) as a potential vector for tumor-directed gene therapy by studying the biodistribution of VV in animal tumor models. A TK-deleted recombinant VV (Western Reserve strain) expressing luciferase on a synthetic promoter was constructed. Luciferase activity was measured in vitro after transduction of a variety of human and murine tumor cell lines and in vivo after intraperitoneal (i.p.) delivery in C57BL/6 mice with 7-day i.p. tumors (10(6) MC-38 cells). Three other in vivo tumor models were examined for tumor-specific gene expression after intravenous delivery of VV (human melanoma in nude mice, adenocarcinoma liver metastasis in immunocompetent mice, and subcutaneous sarcoma in the rat). In addition, a replication-incompetent vaccinia (1 microg of psoralen and ultraviolet light, 365 nm, 4 minutes) was tested in vitro and in vivo and compared with active virus. Luciferase activity in i.p. tumors at 4 days after i.p. injection of VV was >7000-fold higher than lung, >3000-fold higher than liver, and >250-fold higher than ovary. In addition, intravenous injection of VV resulted in markedly higher tumor luciferase activity compared with any other organ in every model tested (up to 188,000-fold higher than liver and 77,000-fold higher than lung). Inactivation of the virus resulted in negligible gene expression in vivo. In summary, VV has a high transduction efficiency in tumor cells with high levels of gene expression. The results suggest a selective in vivo replication of TK-deleted VV in tumor cells. Replication competent, TK-deleted VV appears to be an ideal vector for testing the in vivo delivery of toxic genes to tumor cells.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge