Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Biology 2011-Nov

Variation in expression of calcium-handling proteins is associated with inter-individual differences in mechanical performance of rat (Rattus norvegicus) skeletal muscle.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Rob S James
Isabel Walter
Frank Seebacher

Parole chiave

Astratto

An important constraint on locomotor performance is the trade-off between sprint and endurance performance. One intuitive explanation for this trade-off is that an individual muscle cannot excel at generating both maximal force/power and high fatigue resistance. The underlying reasons for this muscle trade-off are poorly defined. The aim of this study was to test the hypothesis that inter-individual variation in muscle mechanics is associated with inter-individual differences in metabolic capacities and expression of calcium-handling proteins. Lateral gastrocnemius muscles were isolated from 20 rats (Rattus norvegicus) and analysed to determine metabolic capacity, sarco/endoplasmic reticulum calcium ATPase (SERCA)1 protein concentration, total SERCA activity, and mRNA concentrations of SERCA1, SERCA2, troponin I and ryanodine receptors. Isometric studies of lateral gastrocnemius muscles at 30°C showed that muscles with higher sprint performance had lower fatigue resistance. More rapid muscle contraction was correlated with higher lactate dehydrogenase activity and increased expression of ryanodine receptor 1. More rapid muscle relaxation was correlated with increased expression of troponin I type 2 (fast) isoform and decreased expression of SERCA2 (slow) isoform. Treating muscles with dantrolene confirmed that ryanodine receptor activity is important in determining tetanus force and muscle contraction rates, but has no effect on fatigue resistance. Thapsigargin treatment revealed that SERCA activity determines fatigue resistance but does not affect maximal muscle force or contraction rates. We conclude that the opposing roles of SERCA activity and expression of ryanodine receptors in determining fatigue resistance and force production, respectively, at least partly explain differences in sprint and endurance performance in isolated rat gastrocnemius muscle.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge