Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Photosynthesis Research 2001

Xanthophyll cycle-dependent nonphotochemical quenching in Photosystem II: Mechanistic insights gained from Arabidopsis thaliana L. mutants that lack violaxanthin deepoxidase activity and/or lutein.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
A M Gilmore

Parole chiave

Astratto

This study compares Photosystem II (PS II) chlorophyll (Chl) a fluorescence yield changes of Arabidopsis thaliana L. nuclear gene mutants, thoughtfully provided by the authors of Pogson et al. (1998 Proc Natl Acad Sci USA 95: 13324-13329). One single mutant (npq1) inhibits the violaxanthin deepoxidase that converts violaxanthin to antheraxanthin and zeaxanthin. A second single mutant (lut2) inhibits the in-cyclization enzyme step between lycopene and beta,in-carotene causing accumulation of beta,beta-carotene derivatives, primarily the violaxanthin cycle pigments, at the expense of lutein. The double mutant (lut2-npq1) incorporates both lesions. PS II Chl a fluorescence was characterized in leaves and thylakoids using both steady state and time-resolved methods, the intrathylakoid pH was estimated by 9-aminoacridine fluorescence quenching and chloroplast pigments were determined by HPLC. Under maximal PS II Chl a fluorescence intensity conditions without intrathylakoid acidification, the main 2 nanosecond (ns) fluorescence lifetime distribution mode parameters were similar for the WT and mutants both before and after illumination. The light and ATPase mediated intrathylakoid pH levels were also similar and caused similar changes in the fluorescence lifetime distribution widths and centers for the WT and each mutant. The npq1 exhibited low antheraxanthin and zeaxanthin and high violaxanthin levels and the uncoupler-sensitive amplitudes of short (< 1 ns) PS II Chl a fluorescence distribution modes were strongly inhibited compared to the WT. Lutein deficiency coincided with pleiotropic effects on PS II energy dissipation and probably altered conformations of PS II carotenoid-chlorophyll binding proteins. The lut2 exhibited separate active and inactive pools of antheraxanthin and zeaxanthin with respect to all deepoxidation, epoxidation and fluorescence quenching activities. The active xanthophyll cycle pool in lut2 exhibited a lower ( approximately 35% of WT) concentration efficiency, for a given intrathylakoid pH, to increase the sub-nanosecond distribution amplitudes, which predicts and explains inhibited induction kinetics and fluorescence quenching. The lut2-npq1 mutant exhibited a constant pool of antheraxanthin and zeaxanthin, no deepoxidation and little or no pH-reversible fluorescence decrease. It is concluded that in addition to intrathylakoid acidification, a certain level of zeaxanthin and antheraxanthin (or lutein) is absolutely required for the major reversible component of PS II Chl a fluorescence quenching.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge