Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cachexia, Sarcopenia and Muscle 2020-Aug

A potential therapeutic effect of catalpol in Duchenne muscular dystrophy revealed by binding with TAK1

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Dengqiu Xu
Lei Zhao
Jingwei Jiang
Sijia Li
Zeren Sun
Xiaofei Huang
Chunjie Li
Tao Wang
Lixin Sun
Xihua Li

Parole chiave

Astratto

Background: Duchenne muscular dystrophy (DMD) is a progressive muscle disease caused by the loss of dystrophin, which results in inflammation, fibrosis, and the inhibition of myoblast differentiation in skeletal muscle. Catalpol, an iridoid glycoside, improves skeletal muscle function by enhancing myogenesis; it has potential to treat DMD. We demonstrate the positive effects of catalpol in dystrophic skeletal muscle.

Methods: mdx (loss of dystrophin) mice (n = 18 per group) were treated with catalpol (200 mg/kg) for six consecutive weeks. Serum analysis, skeletal muscle performance and histology, muscle contractile function, and gene and protein expression were performed. Molecular docking and ligand-target interactions, RNA interference, immunofluorescence, and plasmids transfection were utilized to explore the protective mechanism in DMD by which catalpol binding with transforming growth factor-β-activated kinase 1 (TAK1) in skeletal muscle.

Results: Six weeks of catalpol treatment improved whole-body muscle health in mdx mice, which was characterized by reduced plasma creatine kinase (n = 18, -35.1%, P < 0.05) and lactic dehydrogenase (n = 18, -10.3%, P < 0.05) activity. These effects were accompanied by enhanced grip strength (n = 18, +25.4%, P < 0.05) and reduced fibrosis (n = 18, -29.0% for hydroxyproline content, P < 0.05). Moreover, catalpol treatment protected against muscle fatigue and promoted muscle recovery in the tibialis anterior (TA) and diaphragm (DIA) muscles (n = 6, +69.8%, P < 0.05 and + 74.8%, P < 0.001, respectively), which was accompanied by enhanced differentiation in primary myoblasts from DMD patients (n = 6, male, mean age: 4.7 ± 1.9 years) and mdx mice. In addition, catalpol eliminated p-TAK1 overexpression in mdx mice (n = 12, -21.3%, P < 0.05) and primary myoblasts. The catalpol-induced reduction in fibrosis and increased myoblast differentiation resulted from the inhibition of TAK1 phosphorylation, leading to reduced myoblast trans-differentiation into myofibroblasts. Catalpol inhibited the phosphorylation of TAK1 by binding to TAK1, possibly at Asp-206, Thr-208, Asn-211, Glu-297, Lys-294, and Tyr-293.

Conclusions: Our findings show that catalpol and TAK1 inhibitors substantially improve whole-body muscle health and the function of dystrophic skeletal muscles and may provide a novel therapy for DMD.

Keywords: Catalpol; Duchenne muscular dystrophy; Fibrosis; Myogenesis; TAK1.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge