Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Toxicology 2020-Oct

Clioquinol inhibits dopamine-β-hydroxylase secretion and noradrenaline synthesis by affecting the redox status of ATOX1 and copper transport in human neuroblastoma SH-SY5Y cells

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Masato Katsuyama
En Kimura
Masakazu Ibi
Kazumi Iwata
Misaki Matsumoto
Nozomi Asaoka
Chihiro Yabe-Nishimura

Parole chiave

Astratto

Clioquinol (5-chloro-7-indo-8-quinolinol), a chelator and ionophore of copper/zinc, was extensively used as an amebicide to treat indigestion and diarrhea in the mid-1900s. However, it was withdrawn from the market in Japan because its use was epidemiologically linked to an increase in the incidence of subacute myelo-optic neuropathy (SMON). SMON is characterized by the subacute onset of sensory and motor disturbances in the lower extremities with occasional visual impairments, which are preceded by abdominal symptoms. Although pathological studies demonstrated axonopathy of the spinal cord and optic nerves, the underlying mechanisms of clioquinol toxicity have not been elucidated in detail. In the present study, a reporter assay revealed that clioquinol (20-50 µM) activated metal response element-dependent transcription in human neuroblastoma SH-SY5Y cells. Clioquinol significantly increased the cellular level of zinc within 1 h, suggesting zinc influx due to its ionophore effects. On the other hand, clioquinol (20-50 µM) significantly increased the cellular level of copper within 24 h. Clioquinol (50 µM) induced the oxidation of the copper chaperone antioxidant 1 (ATOX1), suggesting its inactivation and inhibition of copper transport. The secretion of dopamine-β-hydroxylase (DBH) and lysyl oxidase, both of which are copper-dependent enzymes, was altered by clioquinol (20-50 µM). Noradrenaline levels were reduced by clioquinol (20-50 µM). Disruption of the ATOX1 gene suppressed the secretion of DBH. This study suggested that the disturbance of cellular copper transport by the inactivation of ATOX1 is one of the mechanisms involved in clioquinol-induced neurotoxicity in SMON.

Keywords: ATOX1; Clioquinol; Dopamine-β-hydroxylase; SMON.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge