Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biochemical and Molecular Toxicology 2020-Aug

Inhibition of histone deacetylases is the major pathway mediated by astaxanthin to antagonize LPS-induced inflammatory responses in mammary epithelial cells

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Baskar Venkidasamy
Muthu Thiruvengadam
Prabhu Thirupathi
Umadevi Subramanian

Parole chiave

Astratto

Mastitis is a major inflammatory response of the mammary gland due to various pathogenic invasions and is a serious disease that affects the production yield and health status of cows. Astaxanthin (AST), a xanthophyll carotenoid, is a secondary metabolite synthesized by microalgae and yeasts that has been reported to suppress various inflammatory responses. However, the protective effect of AST on lipopolysaccharide (LPS)-induced mammary epithelial cells has not yet been reported. The present study results indicated that AST treatment markedly attenuated the oxidative stress markers and nitric oxide (NO) while improving the anti-oxidant enzymes in LPS exposed cells. On the other hand, LPS-exposed cells showed nuclear translocation of nuclear factor-κB (NF-κB) with the activation of inflammatory cytokines such as monocyte chemoattractant protein-1, tumor necrosis factor-α, interferon-γ, and interleukin-6 (IL-6). In addition, mRNA expression analysis revealed that the histone deacetylase (HDAC) -1, -2, -3, -6, -7 and pentraxin 3 (PTX3) expressions were increased in the LPS group. Furthermore, the activity of HDAC was increased to 2-fold with a significant reduction in the histone acetyltransferase activity in cells exposed to LPS. However, AST was able to inhibit the nuclear translocation of NF-κB with attenuated HDAC activity. Intriguingly, HDAC inhibition studies demonstrated that the cytokines such as IL-4, IL-8, granulocyte-mcrophage colony stimulating factor, C-reactive protein, IL-17A, and IL-22 were significantly suppressed which were upregulated in LPS treatment; while AST was found acting by improving the anti-inflammatory cytokine IL-10, and thioredoxin reductase levels. Collectively, these findings provide novel insights into the role of HDACs in regulating cellular processes involved in the pathogenesis of LPS-induced mastitis as well as the potential use of AST as a therapeutic in treatment for controlling disease progression.

Keywords: astaxanthin; histone deacetylases; lipopolysaccharide; mastitis.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge