Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Behavioural Brain Research 2020-Mar

Molecular, histological and behavioral evidences for neuroprotective effects of minocycline against nicotine-induced neurodegeneration and cognition impairment: possible role of CREB-BDNF signaling pathway.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Majid Motaghinejad
Negin Farokhi
Manijeh Motevalian
Sepideh Safari

Parole chiave

Astratto

Neurodegeneration is one of the serious adverse effects of stimulant agents such as nicotine. Minocycline possess established neuroprotective properties. The role of CREB-BDNF signaling pathway in mediating the neuroprotective effects of minocycline against nicotine-induced neurodegeneration in rats was evaluated in current study.Seventy adult male rats were divided randomly into seven groups. Group 1 and 2, received 0.7 ml/rat of normal saline (i.p) and nicotine (10 mg/kg, s.c) respectively. Groups 3, 4, 5 and 6, treated concurrently with nicotine (10 mg/kg) and minocycline (10, 20, 30 and 40 mg/kg, i.p, respectively) for 21 days. Group 7 received minocycline alone (40 mg/kg, i.p) for 21 days. From 17th to 21 st days of experiment, Morris water maze (MWM) was used to evaluate learning and spatial memory in rats treated in different groups. According to the critical role of hippocampus in cognitive behavior, hippocampal neurodegenerative parameters (oxidative stress and inflammatory biomarkers) and also cyclic AMP response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) levels were evaluated in isolated hippocampus in day 22 of experiment and after drug treatment. Also hippocampal cell density and tissue changes were evaluated by hematoxylin and eosin staining.Nicotine administration impaired the learning and spatial memory in rats and simultaneous treatment with various doses of minocycline attenuated the nicotine-induced cognition disturbances. In addition, nicotine treatment increased lipid peroxidation and the levels of oxidized form of glutathione (GSSG), interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and Bax protein, while decreasing reduced form of glutathione (GSH), Bcl-2 protein, P-CREB and BDNF levels in the hippocampus of experimental animals. Nicotine also reduced the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) in the hippocampus. Minocycline attenuated nicotine-induced neurodegeneration and elevating CREB (both forms) and BDNF levels. Also minocycline treatment alone increases the cognitive activity and increased CREB (both forms) and BDNF levels and decreased oxidative stress, inflammation and apoptotic biomarkers. Minocycline at high doses cause inhibition of nicotine induced cell density and changes in both area of dentate gyrus (DG) and CA1 in hippocampus.It can be concluded that minocycline, probably through activation of P-CREB/BDNF signaling pathway, confers neuroprotection against nicotine-induced neurodegeneration in rat hippocampus.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge