Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Drug Design, Development and Therapy 2020-Jul

Nano-Graphene Oxide-supported APTES-Spermine, as Gene Delivery System, for Transfection of pEGFP-p53 into Breast Cancer Cell Lines

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Vida Mirzaie
Mehdi Ansari
Seyed Nematollahi-Mahani
Mahshid Nasery
Behzad Karimi
Touba Eslaminejad
Yaghoub Pourshojaei

Parole chiave

Astratto

Purpose: Genetic diseases can be the result of genetic dysfunctions that happen due to some inhibitory and/or environmental risk factors, which are mostly called mutations. One of the most promising treatments for these diseases is correcting the faulty gene. Gene delivery systems are an important issue in improving the gene therapy efficiency. Therefore, the main purpose of this study was modifying graphene oxide nanoparticles by spermine in order to optimize the gene delivery system.

Methods: Graphene oxide/APTES was modified by spermine (GOAS) and characterized by FT-IR, DLS, SEM and AFM techniques. Then pEGFP-p53 was loaded on GOAS, transfected into cells and evaluated by fluorescent microscopy and gene expression techniques.

Results: FT-IR data approved the GOAS sheet formation. Ninety percent of the particles were less than 56 nm based on DLS analysis. SEM analysis indicated that the sheets were dispersed with no aggregation. AFM results confirmed the dispersed structures with thickness of 1.25±0.87 nm. STA analysis showed that GOAS started to decompose from 400°C and was very unstable during the heating process. The first weight loss up to 200°C was due to the evaporation of absorbed water, the second one observed in the range of 200-550°C was assigned to the decomposition of labile oxygen- and nitrogen-containing functional groups, and the third one above 550°C was attributed to the removal of oxygen functionalities. In vitro release of DNA demonstrated the efficient activity of the new synthesized system. Ninety percent of the cells were transfected and showed the GFP under fluorescence microscopy, and TP53 gene was expressed 51-fold in BT-20 cells compared to β-actin as the reference gene. Flow cytometry analysis confirmed the apoptosis of the cells rather than necrosis.

Conclusion: It could be concluded that the new synthesized structure could transfer a high amount of the therapeutic agent into cells with best activity.

Keywords: DNA carrier; MCF-7 cells; conjugated polymer; gene transfer; in vitro; nanomedicine.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge