Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Drug Metabolism and Disposition 2020-Apr

Nitric Oxide Mediated Degradation of CYP2A6 via the Ubiquitin-Proteasome Pathway in Human Hepatoma Cells.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
John Cerrone
Choon-Myung Lee
Tian Mi
Edward Morgan

Parole chiave

Astratto

Several cytochrome P450 enzymes are known to be down regulated by nitric oxide (NO). CYP2A6 is responsible for the metabolism of nicotine and several other xenobiotics, but its susceptibility to down-regulation by NO has not been reported. To address this question, we used HuH7 human hepatoma cell lines to express CYP2A6 with a C-terminal V5 tag (CYP2A6V5). NO donor treatment (DPTA NONOate, DPTA), downregulated CYP2A6 protein to approximately 40% of control levels in four hours. An NO scavenging agent protected CYP2A6 from down-regulation by DPTA in a concentration-dependent manner, demonstrating that the down-regulation is NO-dependent. Experiments with the protein synthesis inhibitor cycloheximide showed that CYP2A6 protein down-regulation occurs post-translationally. In the presence of proteasome inhibitors MG132 or bortezomib, NO treated cells showed an accumulation of a high molecular mass signal, whereas autophagy inhibitors chloroquine and 3-methyladenine and the lysosomal and calpain inhibitor E64d had no effect. Immunoprecipitation of CYP2A6 followed by Western blotting with an anti-ubiquitin antibody showed that the high molecular mass species contain polyubiquitinated CYP2A6 protein. This suggests that NO led to the degradation of protein via the ubiquitin-proteasome pathway. The down-regulation by NO was blocked by the reversible CYP2A6 inhibitor pilocarpine but not by the suicide inhibitor methoxsalen, demonstrating that down-regulation requires NO access to the active site but does not require catalytic activity of the enzyme. These findings provide novel insights towards the regulation of CYP2A6 in a human cell line and can influence our understanding of 2A6 related drug metabolism. SIGNIFICANCE STATEMENT: This study demonstrates that the nicotine metabolizing enzyme CYP2A6 is down regulated by nitric oxide, a molecule produced in large amounts in the context of inflammation and that is also inhaled from cigarette smoke. This occurs via ubiquitination and proteasomal degradation, and does not require catalytic activity of the enzyme. This work adds to the growing knowledge of the selective effect and mechanism of action of NO on P450 enzymes, and suggests a possible novel mode of interaction between nicotine and NO in cigarette smokers.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge