Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Heliyon 2020-Aug

Synthesis, antidiabetic, antioxidant and anti-inflammatory activities of novel hydroxytriazenes based on sulpha drugs

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Varsha Dayma
Jaishri Chopra
Poonam Sharma
Aparna Dwivedi
Indra Tripathi
Amit Bhargava
Vanangamudi Murugesan
Ajay Goswami
Prabhat Baroliya

Parole chiave

Astratto

The present study is aimed to investigate the anti-inflammatory, antioxidant and antidiabetic activities of three series of hydroxytriazenes based on sulfa drugs viz; Sulphathiazole (ST), Sulfisoxazole (SF) and Sulphamethoxazole (SM). Antidiabetic activities of the synthesized hydroxytriazenes were investigated by α-glucosidase and α-amylase inhibition method and IC50 values were recorded. The compounds presented significant α-glucosidase and α-amylase inhibition effect with IC50 values ranging from 122 to 341 μg/mL. Anti-inflammatory activity was also investigated by carrageenan-induced paw edema (CPE) method, where % inhibition was up to 89% after 4 h of treatment and antioxidant properties of the similar compounds were assessed by DPPH and ABTS radical scavenging assays. Antioxidant capacity of all the hydroxytriazenes detected by ABTS assay, was significantly higher as compared to DPPH assay. The hydroxytriazenes having highest antioxidant capacity presented IC50 values for compound ST-1 and ST-6 are 488 μg/mL for DPPH, 54.12 μg/mL for ABTS and 858.5 μg/mL for DPPH, 48.0 μg/mL for ABTS, respectively. These results suggested that ABTS assay may be more useful than DPPH assay for synthetic antioxidants. The findings from the molecular docking experiments may also expand the formation of new potent sulpha drugs based hydroxytriazenes targeting towards the subunit of C-terminal of human maltase-glucoamylase for the treatment of diabetes metabolic disorder. Overall, highlight the multifunctional role of hydroxytriazenes as antidiabetic, antioxidant and anti-inflammatory agents.

Keywords: Anti-inflammatory; Antidiabetic activity; Antioxidant; Hydroxytriazenes; Molecular docking; Organic chemistry; Pharmaceutical chemistry; Sulpha drug.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge