Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical Cancer Research 2020-Jul

Tumor subtype determines therapeutic response to chimeric polypeptide nanoparticle-based chemotherapy in Pten-deleted mouse models of sarcoma

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Rebecca Dodd
Amanda Scherer
Wesley Huang
Gavin McGivney
Wade Gutierrez
Emily Laverty
Kathleen Ashcraft
Victoria Stephens
Parisa Yousefpour
Soumen Saha

Parole chiave

Astratto

Purpose: Nanoparticle-encapsulated drug formulations can improve responses to conventional chemotherapy by increasing drug retention within the tumor and by promoting a more effective anti-tumor immune response than free drug. New drug delivery modalities are needed in sarcomas because they are often chemo-resistant cancers, but the rarity of sarcomas and the complexity of diverse subtypes makes it challenging to investigate novel drug formulations.

Experimental design: New drug formulations can be tested in animal models of sarcomas where the therapeutic response of different formulations can be compared using mice with identical tumor-initiating mutations. Here, using Cre/loxP and CRISPR/Cas9 techniques, we generated two distinct mouse models of Pten-deleted soft-tissue sarcoma: malignant peripheral nerve sheath tumor (MPNST) and undifferentiated pleomorphic sarcoma (UPS). We used these models to test the efficacy of chimeric polypeptide doxorubicin (CP-Dox), a nano-scale micelle formulation, in comparison to free doxorubicin.

Results: The CP-Dox formulation was superior to free doxorubicin in MPNST models. However, in UPS tumors, CP-Dox did not improve survival in comparison to free doxorubicin. While CP-Dox treatment resulted in elevated intratumoral doxorubicin concentrations in MPNSTs, this increase was absent in UPS tumors. Additionally, elevation of CD8+ T cells was observed exclusively in CP-Dox-treated MPNSTs, although these cells were not required for full efficacy of the CP-nanoparticle-based chemotherapy.

Conclusions: These results have important implications for treating sarcomas with nanoparticle-encapsulated chemotherapy by highlighting the tumor subtype-dependent nature of therapeutic response.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge