Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

antviral/arabidopsis

Il collegamento viene salvato negli appunti
ArticoliTest cliniciBrevetti
Pagina 1 a partire dal 113 risultati

Antiviral ARGONAUTEs Against Turnip Crinkle Virus Revealed by Image-Based Trait Analysis.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
RNA-based silencing functions as an important antiviral immunity mechanism in plants. Plant viruses evolved to encode viral suppressors of RNA silencing (VSRs) that interfere with the function of key components in the silencing pathway. As effectors in the RNA silencing pathway, ARGONAUTE (AGO)
Understanding the innate immune mechanisms of plants is necessary for breeding of disease-resistant lines. Previously, we identified the antiviral resistance gene JAX1 from Arabidopsis thaliana, which inhibits infection by potexviruses. JAX1 encodes a unique jacalin-type lectin protein. In this

RDR6 has a broad-spectrum but temperature-dependent antiviral defense role in Nicotiana benthamiana.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
SDE1/SGS2/RDR6, a putative RNA-dependent RNA polymerase (RdRP) from Arabidopsis thaliana, has previously been found to be indispensable for maintaining the posttranscriptional silencing of transgenes, but it is seemingly redundant for antiviral defense. To elucidate the antiviral role of this RdRP
Members of the plant Dicer-like (DCL) protein family are the critical components of the RNA-silencing pathway that mediates innate antiviral defence. The distinct antiviral role of each individual DCL protein has been established with mostly based on observations of aerial parts of plants. Thus,
The N-terminal region of the Ourmia melon virus (OuMV) coat protein (CP) contains a short lysine/arginine-rich (KR) region. By alanine scanning mutagenesis, we showed that the KR region influences pathogenicity and virulence of OuMV without altering viral particle assembly. A mutant, called

Mutations in the antiviral RNAi defense pathway modify Brome mosaic virus RNA recombinant profiles.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
RNA interference (RNAi) mechanism targets viral RNA for degradation. To test whether RNAi gene products contributed to viral RNA recombination, a series of Arabidopsis thaliana RNAi-defective mutants were infected with Brome mosaic virus (BMV) RNAs that have been engineered to support crossovers
RNA interference (RNAi) acts as a natural defense mechanism against virus infection in plants and animals. Much is known about the antiviral function of the core RNAi pathway components identified mostly by genetic screens based on specific RNAi of cellular mRNAs. Here we describe a sensitized

Reverse Genetic Analysis of Antiviral Resistance Signaling and the Resistance Mechanism in Arabidopsis thaliana.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Antiviral RNA silencing and the resistance gene-conferred defense response are major antiviral immune systems in plants. Several of the components involved have been genetically or biochemically identified in Arabidopsis thaliana. One powerful tool to dissect antiviral immune systems involves a

Arabidopsis Bax Inhibitor-1 inhibits cell death induced by pokeweed antiviral protein in Saccharomyces cerevisiae.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Apoptosis is an active form of programmed cell death (PCD) that plays critical roles in the development, differentiation and resistance to pathogens in multicellular organisms. Ribosome inactivating proteins (RIPs) are able to induce apoptotic cell death in mammalian cells. In this study, using
We investigated the genetic pathway in Arabidopsis thaliana targeted during infection by cucumber mosaic virus (CMV) 2b protein, known to suppress non-cell-autonomous transgene silencing and salicylic acid (SA)-mediated virus resistance. We show that 2b expressed from the CMV genome drastically

Functional and Genetic Analysis Identify a Role for Arabidopsis ARGONAUTE5 in Antiviral RNA Silencing.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
RNA silencing functions as an antiviral defense through the action of DICER-like (DCL) and ARGONAUTE (AGO) proteins. In turn, plant viruses have evolved strategies to counteract this defense mechanism, including the expression of suppressors of RNA silencing. Potato virus X (PVX) does not

Identification of a New Host Factor Required for Antiviral RNAi and Amplification of Viral siRNAs.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Small interfering RNAs (siRNAs) are processed from virus-specific dsRNA to direct antiviral RNA interference (RNAi) in diverse eukaryotic hosts. We have recently performed a sensitized genetic screen in Arabidopsis (Arabidopsis thaliana) and identified two related phospholipid flippases required for

Lipid flippases promote antiviral silencing and the biogenesis of viral and host siRNAs in Arabidopsis.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Dicer-mediated processing of virus-specific dsRNA into short interfering RNAs (siRNAs) in plants and animals initiates a specific antiviral defense by RNA interference (RNAi). In this study, we developed a forward genetic screen for the identification of host factors required for antiviral RNAi in
Eukaryotes employ RNA silencing as an innate defense system against invading viruses. Dicer proteins play the most crucial role in initiating this antiviral pathway as they recognize and process incoming viral nucleic acids into small interfering RNAs. Generally, 2 successive infection stages

Viral RNase3 Co-Localizes and Interacts with the Antiviral Defense Protein SGS3 in Plant Cells.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Sweet potato chlorotic stunt virus (SPCSV; family Closteroviridae) encodes a Class 1 RNase III endoribonuclease (RNase3) that suppresses post-transcriptional RNA interference (RNAi) and eliminates antiviral defense in sweetpotato plants (Ipomoea batatas). For RNAi suppression, RNase3 cleaves
Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge