Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

phylloquinone/arabidopsis

Il collegamento viene salvato negli appunti
ArticoliTest cliniciBrevetti
Pagina 1 a partire dal 21 risultati
Phylloquinone is a compound present in all photosynthetic plants serving as cofactor for Photosystem I-mediated electron transport. Newly identified seedling-lethal Arabidopsis thaliana mutants impaired in the biosynthesis of phylloquinone possess reduced Photosystem I activity. The affected gene,
The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this

Phylloquinone (Vitamin K1): Occurrence, Biosynthesis and Functions.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
BACKGROUND Phylloquinone is a prenylated naphthoquinone that is synthesized exclusively by plants, green algae, and some species of cyanobacteria, where it serves as a vital electron carrier in photosystem I and as an electron acceptor for the formation of protein disulfide bonds. OBJECTIVE In
Phylloquinone (vitamin K(1)) is synthesized in cyanobacteria and in chloroplasts of plants, where it serves as electron carrier of photosystem I. The last step of phylloquinone synthesis in cyanobacteria is the methylation of 2-phytyl-1,4-naphthoquinone by the menG gene product. Here, we report that

Key amino acids of arabidopsis VKOR in the activity of phylloquinone reduction and disulfide bond formation.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Many proteins in chloroplast are regulated through the disulfide bond/thiol transformation to realize their activities. A homologue of VKOR (Vitamin K epoxide reductase) in Arabidopsis chloroplast is found to catalyze the disulfide bond formation in vivo and to mediate the specific phylloquinone
Phylloquinone, a substituted 1,4-naphthoquinone with an 18-carbon-saturated phytyl tail, functions as a bound one-electron carrier cofactor at the A1 site of photosystem I (PSI). A Feldmann tag line mutant, no. 2755 (designated as abc4 hereafter), showed pale-green young leaves and white old leaves.
Phylloquinone is the one-electron carrier at the A(1) site of photosystem I, and is essential for photosynthesis. Arabidopsis mutants deficient in early steps of phylloquinone synthesis do not become autotrophic and are seedling lethals, even when grown on sucrose-supplemented media. Here, we
Phytyl-diphosphate, which provides phytyl moieties as a common substrate in both tocopherol and phylloquinone biosynthesis, derives from de novo isoprenoid biosynthesis or a salvage pathway via phytol phosphorylation. However, very little is known about the role and origin of the phytyl moiety for

A chloroplast ABC1-like kinase regulates vitamin E metabolism in Arabidopsis.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
In bacteria and mitochondria, ABC1 (for Activity of bc1 complex)-like kinases regulate ubiquinone synthesis, mutations causing severe respiration defects, including neurological disorders in humans. Little is known about plant ABC1-like kinases; in Arabidopsis (Arabidopsis thaliana), five are

An account of cloned genes of Methyl-erythritol-4-phosphate pathway of isoprenoid biosynthesis in plants.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Isoprenoids, also known as terpenoids, are biosynthesized by the condensation of the two C5 unit isopentenyl diphosphate (IPP) and isomer dimethylallyl diphosphate (DMAPP). Generally, plants use two separate pathways plastidial Methyl-erythritol-4-phosphate (MEP) and cytosolic acetate-mevalonate
(1R,6R)-2-Succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) synthase, or MenD, catalyzes the thiamin diphosphate- (ThDP-) dependent decarboxylation of 2-oxoglutarate, the subsequent addition of the resulting succinyl-ThDP moiety to isochorismate, and the delta-elimination of pyruvate to
Isochorismate synthase 1 (ICS1) is a crucial enzyme in the salicylic acid (SA) synthesis pathway, and thus it is important for immune defences. The ics1 mutant is used in experiments on plant-pathogen interactions, and ICS1 is required for the appropriate hypersensitive disease defence response.
Salicylic acid (SA) is an important signal involved in the activation of defence responses against abiotic and biotic stress. In tobacco, benzoic acid or glucosyl benzoate were proposed to be precursors of SA. This is in sharp contrast with studies in Arabidopsis thaliana, where SA derives from
Most plastid isoprenoids, including photosynthesis-related metabolites such as carotenoids and the side chain of chlorophylls, tocopherols (vitamin E), phylloquinones (vitamin K), and plastoquinones, derive from geranylgeranyl diphosphate (GGPP) synthesized by GGPP synthase (GGPPS) enzymes. Seven

Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
The isoprenoid biosynthetic pathway provides intermediates for the synthesis of a multitude of natural products which serve numerous biochemical functions in plants: sterols (isoprenoids with a C30 backbone) are essential components of membranes; carotenoids (C40) and chlorophylls (which contain a
Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge