עמוד 1 מ 90 תוצאות
The CB1 cannabinoid receptor antagonist SR 141716A abolished the inhibition of Ca2+ currents by the agonist WIN 55,212-2. However, SR 141716A alone increased Ca2+ currents, with an EC50 of 32 nM, in neurons that had been microinjected with CB1 cRNA. For an antagonist to elicit an effect, some
The competitive CB1 receptor antagonist SR141716A was used to test the hypothesis that endogenous cannabinoids modulate tonic pain sensitivity. Pretreatment with the antagonist significantly enhanced the response to a chemical nociceptive stimulus in the formalin test. Postreatment with the
The influence of local circuit interneurons is thought to play an important role in adjusting synaptic strength via endogenous cannabinoid type 1 (CB1) receptors. Using paired whole-cell recordings, combined with double immunofluorescence and biocytin labelling in acute slices of rat CA1 at
Painful tonic spasm (PTS) is a common yet debilitating symptom in patients with neuromyelitis optica spectrum disorder (NMOSD), especially those with longitudinally extensive transverse myelitis. Although carbamazepine is an effective treatment, it poses the risk of severe adverse reactions, such as
Synaptic activity in magnocellular neurosecretory neurones is influenced by the retrograde (i.e. somatodendritic) release of vasopressin, oxytocin and cannabinoids (CBs). For oxytocin neurones, oxytocin exerts constitutive effects on pre-synaptic activity through its ability to release CBs
The effects of neurotoxic destruction of catecholaminergic projections to the spinal cord on cannabinoid antinociception were examined in models of acute and tonic nociception. High performance liquid chromatography was used to quantify monoamine levels in sham-operated and lesioned rats.
In mammalian brain, monoacylglycerol lipase (MAGL) is the primary enzyme responsible for terminating signaling function of the endocannabinoid 2-arachidonoylglycerol (2-AG). Previous in vivo studies with mice indicate that both genetic and chronic pharmacological inactivation of MAGL result in
Cannabinoids produce anti-nociceptive and anti-hyperalgesic effects in acute, inflammatory and neuropathic pain models. The current study investigated the role of cannabinoid (CB1 and CB2) receptors in modulating formalin-induced nociceptive behavior and mechanical allodynia in the rat. Rats
Cannabis is one of the oldest psychotropic drugs and its anticonvulsant properties have been known since the last century. The aim of this review was to analyze the efficacy of cannabis in the treatment of epilepsy in adults and children. In addition, a description of the involvement of the
A functional endocannabinoid system is present in several mammalian organs and tissues. Recently, endocannabinoids and their receptors have been reported in the skeleton. Osteoblasts, the bone forming cells, and osteoclasts, the bone resorbing cells, produce the endocannabinoids anandamide and
The active component of marijuana, Delta(9)-tetrahydrocannabinol, activates the CB1 and CB2 cannabinoid receptors, thus mimicking the action of endogenous cannabinoids. CB1 is predominantly neuronal and mediates the cannabinoid psychotropic effects. CB2 is predominantly expressed in peripheral
BACKGROUND
It is known that dopaminergic cell loss leads to increased endogenous cannabinoid levels and CB1 receptor density.
OBJECTIVE
The aim of this study was to evaluate the influence of dopaminergic cell loss, induced by injection of 6-hydroxydopamine, on the effects exerted by cannabinoid
BACKGROUND
We have shown that the endogenous stimulation of cannabinoid type-1 (CB₁) receptors is a prerequisite for voluntary running in mice, but the precise mechanisms through which the endocannabinoid system exerts a tonic control on running performance remain unknown.
METHODS
We analyzed the
The prevalence of obstructive sleep apnea (OSA) in Americans is 9% and increasing. Increased afferent vagal activation may predispose to OSA by reducing upper airway muscle activation/patency and disrupting respiratory rhythmogenesis. Vagal afferent neurons are inhibited by cannabinoid type 1 (CB1)
At nanomolar concentrations, SR141716 and AM251 act as specific and selective antagonists of the cannabinoid CB1 receptor. In the micromolar range, these compounds were shown to inhibit basal G-protein activity, and this is often interpreted to implicate constitutive activity of the CB1 receptors in