עמוד 1 מ 1726 תוצאות
Poly(ADP-ribosyl)ation is rapidly formed in cells following DNA damage and is regulated by poly(ADP-ribose) polymerase-1 (PARP-1). PARP-1 is known to be involved in various cellular processes, such as DNA repair, genomic stability, transcription, and cell death. During apoptosis, PARP-1 is cleaved
Poly (ADP-ribose) polymerase 1 (PARP-1) is a constitutive enzyme, the major isoform of the PARP family, which is involved in the regulation of DNA repair, cell death, metabolism, and inflammatory responses. Pharmacological inhibitors of PARP provide significant therapeutic benefits in various
A cytotoxic cycle triggered by oxidant-induced DNA single strand breakage and subsequent activation of the nuclear enzyme poly (ADP-ribose) synthetase have been shown to contribute to the cellular injury during various forms of oxidant stress in vitro. The aim of the present study was to investigate
BACKGROUND
Chemokines are key regulators of leukocyte traffic in various forms of inflammation and reperfusion injury. There is emerging evidence that the activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) importantly contributes to the up-regulation of a variety of proinflammatory
DNA single-strand breakage and activation of the nuclear enzyme poly (ADP-ribose) synthetase (PARS) triggers an energy-consuming, inefficient repair cycle, which contributes to peroxynitrite-induced cellular injury. Recently, we proposed that during an acute model (pleurisy), cellular injury is
BACKGROUND
Atherosclerosis begins as local inflammation of vessels at sites of disturbed flow, where low shear stress (LSS) leads to mechanical irritation and plaque development and progression. Nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP-1) is associated with the inflammation response during
Poly(ADP-ribose) is synthesized from nicotinamide adenine dinucleotide (NAD) by poly(ADP-ribose) polymerase 1 (PARP-1) and degraded by poly(ADP-ribose) glycohydrolase (PARG). The aim of the present study was to examine the role of PARG in the development of experimental colitis. To address this
BACKGROUND
Poly (ADP-ribose) polymerase (PARP) participates in inflammation by cellular necrosis and the nuclear factor-kappa-B (NF-kappaB)-dependent transcription. The purpose of this study was to examine the roles of PARP in ventilator-induced lung injury (VILI) in normal mice lung.
METHODS
Male
Crohn's disease is a chronic disease characterized by oxidant-induced tissue injury and increased intestinal permeability. A consequence of oxidative damage is the accumulation of DNA strand breaks and activation of poly(ADP-ribose) polymerase (PARP), which subsequently catalyzes ADP-ribosylation of
Atherosclerosis is a chronic inflammatory disease. Toll-like receptor 4 (TLR4) is an important signaling receptor and plays a critical role in the inflammatory response. Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme that can regulate the expression of various inflammatory genes. In this
BACKGROUND
Poly(ADP-ribose) polymerase-1 (PARP-1), a monomeric nuclear enzyme present in eukaryotes, plays a role in cell death, inflammatory mediator expression, and mononuclear cell recruitment in various experimental models of inflammation and reperfusion injury. Part of the molecular mechanism
In addition to biochemical stimuli, physical forces also play a critical role in regulating the structure, function, and metabolism of the lung. Hyperstretch can induce the inflammatory responses in asthma, but the mechanism remains unclear. Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme
Poly(ADP-ribose) polymerase 1 (PARP1) contributes to necrotic cell death and inflammation in several disease models; however, the role of PARP1 in fibrogenesis remains to be defined. Here, we tested whether PARP1 was involved in the pathogenesis of renal fibrosis using the unilateral ureteral
Periodontal diseases are characterized in part by generation of oxygen free radicals, which can cause breaks in cellular DNA strands. Repair of damaged DNA is dependent upon the synthesis of poly (ADP-ribose)(PADPR) catalyzed by PADPR synthetase, an enzyme known to be activated by the broken ends of
BACKGROUND
Poly(ADP-ribose) polymerase (PARP) participates in multi-organ failure in various inflammatory diseases including acute necrotizing pancreatitis (ANP). Since pancreatitis-associated adrenal insufficiency is partly caused by inflammatory damage to the adrenal cortex, we examined whether