עמוד 1 מ 1270 תוצאות
The poly-(ADP-ribose) polymerase (PARP) inhibitors olaparib and talazoparib, have recently been approved for use in patients with metastatic breast cancer (BC) and germline BRCA 1 or 2 mutations due to improved progression-free survival compared to chemotherapy. An increasing number of clinical
Purpose of review: Recently, both immune checkpoint inhibitors and poly(ADP-ribose) polymerase inhibitors have demonstrated clinical benefit in some subsets of HER2-negative breast cancer patients. A biological rationale exists supporting
In contrast to endocrine-sensitive and human epidermal growth factor receptor 2 (HER2)-positive breast cancer, novel agents capable of treating advanced triple-negative breast cancer (TNBC) are lacking. Poly(ADP-ribose) polymerase (PARP) inhibitors are emerging as one of the most promising
As knowledge increases about the processes underlying cancer, it is becoming feasible to design "targeted therapies" directed toward specific pathways that are critical to the genesis or maintenance of the malignant phenotype. Poly(ADP-ribose) polymerase (PARP) inhibitors are an example of this new
Poly(ADP-ribose) polymerase (PARP)-1 may act in an error-prone pathway called alternative end joining (Alt-EJ) for DNA double-strand break (DSB) repair when nonhomologous end joining is defective. We examined the recruitment of PARP-1 to chromatin in response to radiomimetic agents and the effects
OBJECTIVE
The nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) represents an important novel target in cancer therapy. It is essential for the repair of single-strand DNA breaks via the base excision repair pathway. Inhibitors of PARP-1 were first developed as chemosensitizers. However,
It has been reported that expression levels of DNA repair genes are frequently associated with chemotherapy sensitivity and prognosis in breast cancer (BC) subtypes. The poly (ADP-ribose) polymerase-1 (PARP1), one of the major DNA single-strand break (SSBs) repair proteins, has been demonstrated a
When DNA damage is detected, checkpoint signal networks are activated to stop the cell cycle, and DNA repair processes begin. Inhibitory compounds targeting components of DNA damage response pathways have been identified and are being used in clinical trials, in combination with chemotherapeutic
Double strand breaks induced by genotoxic agents, if inappropriately repaired, will cause cell death or induce cancer. Poly(ADP-ribose) polymerase-3 (PARP-3) serves a role in double strand break repair, and may be involved in tumorigenesis. To the best of our knowledge, the role of PARP-3 in breast
Defects in homologous recombination (HR) repair are found in breast cancers. Intriguingly, breast cancers with defective HR show increased sensitivity to DNA crosslinking agents and poly(ADP-ribose) polymerase (PARP) inhibitors. As such, genes that can affect HR functions have been of high interest
BRCA mutations are the main known hereditary factor for breast cancer. Notably, poly (ADP-ribose) polymerase 1 (PARP1) expression status plays a critical role in breast cancer progression and the clinical development of PARP1 inhibitors to treat BRCA-mutated breast cancer has advanced rapidly.
The primary purpose of this research is to investigate whether exposure to polychlorinated biphenyls (PCBs), i.e. PCB153 and PCB126, is associated with induction of reactive oxygen species (ROS), poly(ADP-ribose) polymerase-1 (PARP-1) activation, and cell death in human T47D and MDA-MB-231 breast
Caspace-mediated proteolysis of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) (EC 2.4, 2.30) is a biochemical marker of cell death in response to various apoptotic stimuli. Anti-PARP antibodies identifying the 89 kDa polypeptide from the C-terminus as well as the 113 kDa native enzyme are
BACKGROUND
Previous studies have shown that the poly (adenosine diphosphate-ribose) polymerase (PARP) level is a promising indicator of breast cancer. However, its prognostic value remains controversial. The present meta-analysis evaluated the prognostic value of PARP expression in breast
Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer that is clinically defined as lacking estrogen and progesterone receptors, as well as being ERBB2 (HER-2) negative. Without specific therapeutic targets, TNBC carries a worse prognosis than other types of breast cancer in