Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2016

18O-Tracer Metabolomics Reveals Protein Turnover and CDP-Choline Cycle Activity in Differentiating 3T3-L1 Pre-Adipocytes.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Jay S Kirkwood
Cristobal L Miranda
Gerd Bobe
Claudia S Maier
Jan F Stevens

キーワード

概要

The differentiation of precursor cells into mature adipocytes (adipogenesis) has been an area of increased focus, spurred by a rise in obesity rates. Though our understanding of adipogenesis and its regulation at the cellular level is growing, many questions remain, especially regarding the regulation of the metabolome. The 3T3-L1 cell line is the most well characterized cellular model of adipogenesis. Using a time course metabolomics approach, we show that the 3T3-L1 preadipocyte metabolome is greatly altered during the first 48 hours of differentiation, where cells go through about two rounds of cell division, a process known as mitotic clonal expansion. Short-chain peptides were among several small molecules that were increased during mitotic clonal expansion. Additional indicators of protein turnover were also increased, including bilirubin, a degradation product of heme-containing proteins, and 3-methylhistidine, a post-translationally modified amino acid that is not reutilized for protein synthesis. To study the origin of the peptides, we treated differentiating preadipocytes with 18O labeled water and found that 18O was incorporated into the short chain peptides, confirming them, at least in part, as products of hydrolysis. Inhibitors of the proteasome or matrix metalloproteinases affected the peptide levels during differentiation, but inhibitors of autophagy or peptidases did not. 18O was also incorporated into several choline metabolites including cytidine 5'-diphosphocholine (CDP-choline), glycerophosphocholine, and several phosphatidylcholine species, indicative of phosphatidylcholine synthesis/degradation and of flux through the CDP-choline cycle, a hallmark of proliferating cells. 18O-Tracer metabolomics further showed metabolic labeling of glutamate, suggestive of glutaminolysis, also characteristic of proliferating cells. Together, these results highlight the utility of 18O isotope labeling in combination with metabolomics to uncover changes in cellular metabolism that are not detectable by time-resolved metabolomics.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge