Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Teratology 2002-May

2001 Warkany lecture: to die or not to die, the role of apoptosis in normal and abnormal mammalian development.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Philip E Mirkes

キーワード

概要

Cell death is a common and reproducible feature of the development of many mammalian tissues/organs. Two well-known examples of programmed cell death (PCD) are the cell deaths associated with fusion of the neural folds and removal of interdigital mesenchymal cells during digit formation. Like normal development, abnormal development is also associated with increased cell death in tissues/organs that develop abnormally after exposure to a wide variety of teratogens. At least in some instances, teratogens induce cell death in areas of normal PCD, suggesting that there is a link between programmed and teratogen-induced cell death. Although researchers recognized early on that cell death is an integral part of both normal and abnormal development, little was known about the mechanisms of cell death. In 1972, Kerr et al. ('72) showed conclusively that cell deaths, induced in a variety of contexts, followed a reproducible pattern, which they termed apoptosis. The next breakthrough came in the 1980s when Horvitz and his colleagues identified specific cell death genes (ced) that controlled PCD in the roundworm, Caenorhabditis elegans (C. elegans). Identification of ced genes in the roundworm quickly led to the isolation of their mammalian homologues. Subsequent research in the 1990s led to the identification of a cadre of proteins controlling cell death in mammals, i.e., receptors/ligands, caspases, cytochrome c, Apaf-1, Bcl-2 family proteins, and IAPs. Two major pathways of apoptosis have now been elucidated, the receptor-mediated and the mitochondrial apoptotic pathways. The latter pathway, induced by a wide variety of toxic agents, is activated by the release of cytochrome c from mitochondria. Cytochrome c then facilitates the activation of a caspase cascade involving caspase-9 and -3. Activation of these caspases results in the cleavage of a variety of cellular proteins leading to the orderly demise of the cell. Work from my laboratory in the last 5 years has shown that teratogens, such as hyperthermia, 4-hydroperoxycyclophosphamide, and staurosporine, induce cell death in day 9 mouse embryos by activating the mitochondrial apoptotic pathway, i.e., mitochondrial release of cytochrome c, activation of caspase-9 and -3, inactivation of poly (ADP-ribose) polymerase (PARP), and systematic degradation of DNA. Our work, as well as the work of others, has also shown that different tissues within the early post implantation mammalian embryo are differentially sensitive to the cell death inducing potential of teratogens, from exquisite sensitivity of cells in the developing central nervous system to complete resistance of cells in the developing heart. More importantly, we have shown that the resistance of heart cells is directly related to the failure to activate the mitochondrial apoptotic pathway in these cells. Thus, whether a cell dies in response to a teratogen and therefore contributes to the pathogenesis culminating in birth defects, depends, at least in part, by the cell's ability to regulate the mitochondrial apoptotic pathway. Future research aimed at understanding this regulation should provide insight not only into the mechanism of teratogen-induced cell death but also the role of cell death in the genesis of birth defects.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge